summaryrefslogtreecommitdiffstats
path: root/lib/librte_sched/rte_red.h
blob: 36273cac6464840a81debaaf1f3ba9dad5bcb50e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
/* SPDX-License-Identifier: BSD-3-Clause
 * Copyright(c) 2010-2014 Intel Corporation
 */

#ifndef __RTE_RED_H_INCLUDED__
#define __RTE_RED_H_INCLUDED__

#ifdef __cplusplus
extern "C" {
#endif

/**
 * @file
 * RTE Random Early Detection (RED)
 *
 *
 ***/

#include <stdint.h>
#include <limits.h>
#include <rte_common.h>
#include <rte_debug.h>
#include <rte_cycles.h>
#include <rte_branch_prediction.h>

#define RTE_RED_SCALING                     10         /**< Fraction size for fixed-point */
#define RTE_RED_S                           (1 << 22)  /**< Packet size multiplied by number of leaf queues */
#define RTE_RED_MAX_TH_MAX                  1023       /**< Max threshold limit in fixed point format */
#define RTE_RED_WQ_LOG2_MIN                 1          /**< Min inverse filter weight value */
#define RTE_RED_WQ_LOG2_MAX                 12         /**< Max inverse filter weight value */
#define RTE_RED_MAXP_INV_MIN                1          /**< Min inverse mark probability value */
#define RTE_RED_MAXP_INV_MAX                255        /**< Max inverse mark probability value */
#define RTE_RED_2POW16                      (1<<16)    /**< 2 power 16 */
#define RTE_RED_INT16_NBITS                 (sizeof(uint16_t) * CHAR_BIT)
#define RTE_RED_WQ_LOG2_NUM                 (RTE_RED_WQ_LOG2_MAX - RTE_RED_WQ_LOG2_MIN + 1)

/**
 * Externs
 *
 */
extern uint32_t rte_red_rand_val;
extern uint32_t rte_red_rand_seed;
extern uint16_t rte_red_log2_1_minus_Wq[RTE_RED_WQ_LOG2_NUM];
extern uint16_t rte_red_pow2_frac_inv[16];

/**
 * RED configuration parameters passed by user
 *
 */
struct rte_red_params {
	uint16_t min_th;   /**< Minimum threshold for queue (max_th) */
	uint16_t max_th;   /**< Maximum threshold for queue (max_th) */
	uint16_t maxp_inv; /**< Inverse of packet marking probability maximum value (maxp = 1 / maxp_inv) */
	uint16_t wq_log2;  /**< Negated log2 of queue weight (wq = 1 / (2 ^ wq_log2)) */
};

/**
 * RED configuration parameters
 */
struct rte_red_config {
	uint32_t min_th;   /**< min_th scaled in fixed-point format */
	uint32_t max_th;   /**< max_th scaled in fixed-point format */
	uint32_t pa_const; /**< Precomputed constant value used for pa calculation (scaled in fixed-point format) */
	uint8_t maxp_inv;  /**< maxp_inv */
	uint8_t wq_log2;   /**< wq_log2 */
};

/**
 * RED run-time data
 */
struct rte_red {
	uint32_t avg;      /**< Average queue size (avg), scaled in fixed-point format */
	uint32_t count;    /**< Number of packets since last marked packet (count) */
	uint64_t q_time;   /**< Start of the queue idle time (q_time) */
};

/**
 * @brief Initialises run-time data
 *
 * @param red [in,out] data pointer to RED runtime data
 *
 * @return Operation status
 * @retval 0 success
 * @retval !0 error
 */
int
rte_red_rt_data_init(struct rte_red *red);

/**
 * @brief Configures a single RED configuration parameter structure.
 *
 * @param red_cfg [in,out] config pointer to a RED configuration parameter structure
 * @param wq_log2 [in]  log2 of the filter weight, valid range is:
 *             RTE_RED_WQ_LOG2_MIN <= wq_log2 <= RTE_RED_WQ_LOG2_MAX
 * @param min_th [in] queue minimum threshold in number of packets
 * @param max_th [in] queue maximum threshold in number of packets
 * @param maxp_inv [in] inverse maximum mark probability
 *
 * @return Operation status
 * @retval 0 success
 * @retval !0 error
 */
int
rte_red_config_init(struct rte_red_config *red_cfg,
	const uint16_t wq_log2,
	const uint16_t min_th,
	const uint16_t max_th,
	const uint16_t maxp_inv);

/**
 * @brief Generate random number for RED
 *
 * Implementation based on:
 * http://software.intel.com/en-us/articles/fast-random-number-generator-on-the-intel-pentiumr-4-processor/
 *
 * 10 bit shift has been found through empirical tests (was 16).
 *
 * @return Random number between 0 and (2^22 - 1)
 */
static inline uint32_t
rte_fast_rand(void)
{
	rte_red_rand_seed = (214013 * rte_red_rand_seed) + 2531011;
	return rte_red_rand_seed >> 10;
}

/**
 * @brief calculate factor to scale average queue size when queue
 *        becomes empty
 *
 * @param wq_log2 [in] where EWMA filter weight wq = 1/(2 ^ wq_log2)
 * @param m [in] exponent in the computed value (1 - wq) ^ m
 *
 * @return computed value
 * @retval ((1 - wq) ^ m) scaled in fixed-point format
 */
static inline uint16_t
__rte_red_calc_qempty_factor(uint8_t wq_log2, uint16_t m)
{
	uint32_t n = 0;
	uint32_t f = 0;

	/**
	 * Basic math tells us that:
	 *   a^b = 2^(b * log2(a) )
	 *
	 * in our case:
	 *   a = (1-Wq)
	 *   b = m
	 *  Wq = 1/ (2^log2n)
	 *
	 * So we are computing this equation:
	 *   factor = 2 ^ ( m * log2(1-Wq))
	 *
	 * First we are computing:
	 *    n = m * log2(1-Wq)
	 *
	 * To avoid dealing with signed numbers log2 values are positive
	 * but they should be negative because (1-Wq) is always < 1.
	 * Contents of log2 table values are also scaled for precision.
	 */

	n = m * rte_red_log2_1_minus_Wq[wq_log2 - RTE_RED_WQ_LOG2_MIN];

	/**
	 * The tricky part is computing 2^n, for this I split n into
	 * integer part and fraction part.
	 *   f - is fraction part of n
	 *   n - is integer part of original n
	 *
	 * Now using basic math we compute 2^n:
	 *   2^(f+n) = 2^f * 2^n
	 *   2^f - we use lookup table
	 *   2^n - can be replaced with bit shift right operations
	 */

	f = (n >> 6) & 0xf;
	n >>= 10;

	if (n < RTE_RED_SCALING)
		return (uint16_t) ((rte_red_pow2_frac_inv[f] + (1 << (n - 1))) >> n);

	return 0;
}

/**
 * @brief Updates queue average in condition when queue is empty
 *
 * Note: packet is never dropped in this particular case.
 *
 * @param red_cfg [in] config pointer to a RED configuration parameter structure
 * @param red [in,out] data pointer to RED runtime data
 * @param time [in] current time stamp
 *
 * @return Operation status
 * @retval 0 enqueue the packet
 * @retval 1 drop the packet based on max threshold criterion
 * @retval 2 drop the packet based on mark probability criterion
 */
static inline int
rte_red_enqueue_empty(const struct rte_red_config *red_cfg,
	struct rte_red *red,
	const uint64_t time)
{
	uint64_t time_diff = 0, m = 0;

	RTE_ASSERT(red_cfg != NULL);
	RTE_ASSERT(red != NULL);

	red->count ++;

	/**
	 * We compute avg but we don't compare avg against
	 *  min_th or max_th, nor calculate drop probability
	 */
	time_diff = time - red->q_time;

	/**
	 * m is the number of packets that might have arrived while the queue was empty.
	 * In this case we have time stamps provided by scheduler in byte units (bytes
	 * transmitted on network port). Such time stamp translates into time units as
	 * port speed is fixed but such approach simplifies the code.
	 */
	m = time_diff / RTE_RED_S;

	/**
	 * Check that m will fit into 16-bit unsigned integer
	 */
	if (m >= RTE_RED_2POW16) {
		red->avg = 0;
	} else {
		red->avg = (red->avg >> RTE_RED_SCALING) * __rte_red_calc_qempty_factor(red_cfg->wq_log2, (uint16_t) m);
	}

	return 0;
}

/**
 *  Drop probability (Sally Floyd and Van Jacobson):
 *
 *     pb = (1 / maxp_inv) * (avg - min_th) / (max_th - min_th)
 *     pa = pb / (2 - count * pb)
 *
 *
 *                 (1 / maxp_inv) * (avg - min_th)
 *                ---------------------------------
 *                         max_th - min_th
 *     pa = -----------------------------------------------
 *                count * (1 / maxp_inv) * (avg - min_th)
 *           2 - -----------------------------------------
 *                          max_th - min_th
 *
 *
 *                                  avg - min_th
 *     pa = -----------------------------------------------------------
 *           2 * (max_th - min_th) * maxp_inv - count * (avg - min_th)
 *
 *
 *  We define pa_const as: pa_const =  2 * (max_th - min_th) * maxp_inv. Then:
 *
 *
 *                     avg - min_th
 *     pa = -----------------------------------
 *           pa_const - count * (avg - min_th)
 */

/**
 * @brief make a decision to drop or enqueue a packet based on mark probability
 *        criteria
 *
 * @param red_cfg [in] config pointer to structure defining RED parameters
 * @param red [in,out] data pointer to RED runtime data
 *
 * @return operation status
 * @retval 0 enqueue the packet
 * @retval 1 drop the packet
 */
static inline int
__rte_red_drop(const struct rte_red_config *red_cfg, struct rte_red *red)
{
	uint32_t pa_num = 0;    /* numerator of drop-probability */
	uint32_t pa_den = 0;    /* denominator of drop-probability */
	uint32_t pa_num_count = 0;

	pa_num = (red->avg - red_cfg->min_th) >> (red_cfg->wq_log2);

	pa_num_count = red->count * pa_num;

	if (red_cfg->pa_const <= pa_num_count)
		return 1;

	pa_den = red_cfg->pa_const - pa_num_count;

	/* If drop, generate and save random number to be used next time */
	if (unlikely((rte_red_rand_val % pa_den) < pa_num)) {
		rte_red_rand_val = rte_fast_rand();

		return 1;
	}

	/* No drop */
	return 0;
}

/**
 * @brief Decides if new packet should be enqeued or dropped in queue non-empty case
 *
 * @param red_cfg [in] config pointer to a RED configuration parameter structure
 * @param red [in,out] data pointer to RED runtime data
 * @param q [in] current queue size (measured in packets)
 *
 * @return Operation status
 * @retval 0 enqueue the packet
 * @retval 1 drop the packet based on max threshold criterion
 * @retval 2 drop the packet based on mark probability criterion
 */
static inline int
rte_red_enqueue_nonempty(const struct rte_red_config *red_cfg,
	struct rte_red *red,
	const unsigned q)
{
	RTE_ASSERT(red_cfg != NULL);
	RTE_ASSERT(red != NULL);

	/**
	* EWMA filter (Sally Floyd and Van Jacobson):
	*    avg = (1 - wq) * avg + wq * q
	*    avg = avg + q * wq - avg * wq
	*
	* We select: wq = 2^(-n). Let scaled version of avg be: avg_s = avg * 2^(N+n). We get:
	*    avg_s = avg_s + q * 2^N - avg_s * 2^(-n)
	*
	* By using shift left/right operations, we get:
	*    avg_s = avg_s + (q << N) - (avg_s >> n)
	*    avg_s += (q << N) - (avg_s >> n)
	*/

	/* avg update */
	red->avg += (q << RTE_RED_SCALING) - (red->avg >> red_cfg->wq_log2);

	/* avg < min_th: do not mark the packet  */
	if (red->avg < red_cfg->min_th) {
		red->count ++;
		return 0;
	}

	/* min_th <= avg < max_th: mark the packet with pa probability */
	if (red->avg < red_cfg->max_th) {
		if (!__rte_red_drop(red_cfg, red)) {
			red->count ++;
			return 0;
		}

		red->count = 0;
		return 2;
	}

	/* max_th <= avg: always mark the packet */
	red->count = 0;
	return 1;
}

/**
 * @brief Decides if new packet should be enqeued or dropped
 * Updates run time data based on new queue size value.
 * Based on new queue average and RED configuration parameters
 * gives verdict whether to enqueue or drop the packet.
 *
 * @param red_cfg [in] config pointer to a RED configuration parameter structure
 * @param red [in,out] data pointer to RED runtime data
 * @param q [in] updated queue size in packets
 * @param time [in] current time stamp
 *
 * @return Operation status
 * @retval 0 enqueue the packet
 * @retval 1 drop the packet based on max threshold criteria
 * @retval 2 drop the packet based on mark probability criteria
 */
static inline int
rte_red_enqueue(const struct rte_red_config *red_cfg,
	struct rte_red *red,
	const unsigned q,
	const uint64_t time)
{
	RTE_ASSERT(red_cfg != NULL);
	RTE_ASSERT(red != NULL);

	if (q != 0) {
		return rte_red_enqueue_nonempty(red_cfg, red, q);
	} else {
		return rte_red_enqueue_empty(red_cfg, red, time);
	}
}

/**
 * @brief Callback to records time that queue became empty
 *
 * @param red [in,out] data pointer to RED runtime data
 * @param time [in] current time stamp
 */
static inline void
rte_red_mark_queue_empty(struct rte_red *red, const uint64_t time)
{
	red->q_time = time;
}

#ifdef __cplusplus
}
#endif

#endif /* __RTE_RED_H_INCLUDED__ */