blob: 8c191a9b83821709715ea0822ac5e26a3388666a (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
|
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation
*/
#ifndef __INCLUDE_RTE_SCHED_COMMON_H__
#define __INCLUDE_RTE_SCHED_COMMON_H__
#ifdef __cplusplus
extern "C" {
#endif
#include <stdint.h>
#include <sys/types.h>
#define __rte_aligned_16 __attribute__((__aligned__(16)))
static inline uint32_t
rte_sched_min_val_2_u32(uint32_t x, uint32_t y)
{
return (x < y)? x : y;
}
#if 0
static inline uint32_t
rte_min_pos_4_u16(uint16_t *x)
{
uint32_t pos0, pos1;
pos0 = (x[0] <= x[1])? 0 : 1;
pos1 = (x[2] <= x[3])? 2 : 3;
return (x[pos0] <= x[pos1])? pos0 : pos1;
}
#else
/* simplified version to remove branches with CMOV instruction */
static inline uint32_t
rte_min_pos_4_u16(uint16_t *x)
{
uint32_t pos0 = 0;
uint32_t pos1 = 2;
if (x[1] <= x[0]) pos0 = 1;
if (x[3] <= x[2]) pos1 = 3;
if (x[pos1] <= x[pos0]) pos0 = pos1;
return pos0;
}
#endif
/*
* Compute the Greatest Common Divisor (GCD) of two numbers.
* This implementation uses Euclid's algorithm:
* gcd(a, 0) = a
* gcd(a, b) = gcd(b, a mod b)
*
*/
static inline uint32_t
rte_get_gcd(uint32_t a, uint32_t b)
{
uint32_t c;
if (a == 0)
return b;
if (b == 0)
return a;
if (a < b) {
c = a;
a = b;
b = c;
}
while (b != 0) {
c = a % b;
a = b;
b = c;
}
return a;
}
/*
* Compute the Lowest Common Denominator (LCD) of two numbers.
* This implementation computes GCD first:
* LCD(a, b) = (a * b) / GCD(a, b)
*
*/
static inline uint32_t
rte_get_lcd(uint32_t a, uint32_t b)
{
return (a * b) / rte_get_gcd(a, b);
}
#ifdef __cplusplus
}
#endif
#endif /* __INCLUDE_RTE_SCHED_COMMON_H__ */
|