summaryrefslogtreecommitdiffstats
path: root/lib/librte_table/rte_table_hash_lru.c
blob: 407c62ab8f020c93db503fb3bc7e760c11948e47 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92<
/*
 * ------------------------------------------------------------------
 * vl_memory_api_h.h - memory API headers, in a specific order.
 *
 * Copyright (c) 2009-2010 Cisco and/or its affiliates. Licensed under the
 * Apache License, Version 2.0 (the "License"); you may not use this file
 * except in compliance with the License. You may obtain a copy of the
 * License at:
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 * License for the specific language governing permissions and limitations
 * under the License.
 * ------------------------------------------------------------------
 */

/*
 * Add to the bottom of the #include list, or elves will steal your keyboard
 * in the middle of the night!
 *
 * Include current layer (2) last, or an artistic disagreement about message
 * numbering will occur
 */

#ifndef included_from_layer_3
#include <vlibmemory/vl_memory_api_h.h>
#endif /* included_from_layer_3 */

#ifdef vl_printfun
#include <vnet/format_fns.h>
#endif

#include <vnet/bonding/bond.api.h>
#include <vnet/devices/af_packet/af_packet.api.h>
#include <vnet/devices/virtio/vhost_user.api.h>
#include <vnet/devices/tap/tapv2.api.h>
#include <vnet/gre/gre.api.h>
#include <vnet/interface.api.h>
#include <vnet/l2/l2.api.h>
#include <vnet/l2tp/l2tp.api.h>
#include <vnet/span/span.api.h>
#include <vnet/ip/ip.api.h>
#include <vnet/vxlan/vxlan.api.h>
#include <vnet/geneve/geneve.api.h>
#include <vnet/lldp/lldp.api.h>
#include <vnet/vxlan-gpe/vxlan_gpe.api.h>
#include <vnet/bfd/bfd.api.h>
#include <vnet/ipsec/ipsec.api.h>
#include <vnet/lisp-cp/lisp.api.h>
#include <vnet/lisp-gpe/lisp_gpe.api.h>
#include <vnet/lisp-cp/one.api.h>
#include <vnet/session/session.api.h>
#include <vnet/mpls/mpls.api.h>
#include <vnet/srv6/sr.api.h>
#include <vnet/srmpls/sr_mpls.api.h>
#include <vnet/classify/classify.api.h>
#include <vnet/ipfix-export/ipfix_export.api.h>
#include <vnet/cop/cop.api.h>
#include <vnet/policer/policer.api.h>
#include <vnet/ethernet/p2p_ethernet.api.h>
#include <vnet/tcp/tcp.api.h>
#include <vnet/udp/udp.api.h>
#include <vnet/bier/bier.api.h>
#include <vnet/ip/punt.api.h>
#include <vnet/pg/pg.api.h>
#include <vnet/feature/feature.api.h>
#include <vnet/qos/qos.api.h>
#include <vnet/devices/pipe/pipe.api.h>
#include <vnet/vxlan-gbp/vxlan_gbp.api.h>
#include <vnet/syslog/syslog.api.h>
#include <vnet/devices/virtio/virtio.api.h>
#include <vnet/gso/gso.api.h>

/*
 * fd.io coding-style-patch-verification: ON
 *
 * Local Variables: eval: (c-set-style "gnu") End:
 */
href='#n584'>584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
/*-
 *	 BSD LICENSE
 *
 *	 Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
 *	 All rights reserved.
 *
 *	 Redistribution and use in source and binary forms, with or without
 *	 modification, are permitted provided that the following conditions
 *	 are met:
 *
 *	* Redistributions of source code must retain the above copyright
 *		 notice, this list of conditions and the following disclaimer.
 *	* Redistributions in binary form must reproduce the above copyright
 *		 notice, this list of conditions and the following disclaimer in
 *		 the documentation and/or other materials provided with the
 *		 distribution.
 *	* Neither the name of Intel Corporation nor the names of its
 *		 contributors may be used to endorse or promote products derived
 *		 from this software without specific prior written permission.
 *
 *	 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *	 "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *	 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 *	 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 *	 OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 *	 SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 *	 LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 *	 DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 *	 THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 *	 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 *	 OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include <string.h>
#include <stdio.h>

#include <rte_common.h>
#include <rte_mbuf.h>
#include <rte_memory.h>
#include <rte_malloc.h>
#include <rte_log.h>

#include "rte_table_hash.h"
#include "rte_lru.h"

#define KEYS_PER_BUCKET	4

#ifdef RTE_TABLE_STATS_COLLECT

#define RTE_TABLE_HASH_LRU_STATS_PKTS_IN_ADD(table, val) \
	table->stats.n_pkts_in += val
#define RTE_TABLE_HASH_LRU_STATS_PKTS_LOOKUP_MISS(table, val) \
	table->stats.n_pkts_lookup_miss += val

#else

#define RTE_TABLE_HASH_LRU_STATS_PKTS_IN_ADD(table, val)
#define RTE_TABLE_HASH_LRU_STATS_PKTS_LOOKUP_MISS(table, val)

#endif

struct bucket {
	union {
		struct bucket *next;
		uint64_t lru_list;
	};
	uint16_t sig[KEYS_PER_BUCKET];
	uint32_t key_pos[KEYS_PER_BUCKET];
};

struct grinder {
	struct bucket *bkt;
	uint64_t sig;
	uint64_t match;
	uint64_t match_pos;
	uint32_t key_index;
};

struct rte_table_hash {
	struct rte_table_stats stats;

	/* Input parameters */
	uint32_t key_size;
	uint32_t entry_size;
	uint32_t n_keys;
	uint32_t n_buckets;
	rte_table_hash_op_hash f_hash;
	uint64_t seed;
	uint32_t signature_offset;
	uint32_t key_offset;

	/* Internal */
	uint64_t bucket_mask;
	uint32_t key_size_shl;
	uint32_t data_size_shl;
	uint32_t key_stack_tos;

	/* Grinder */
	struct grinder grinders[RTE_PORT_IN_BURST_SIZE_MAX];

	/* Tables */
	struct bucket *buckets;
	uint8_t *key_mem;
	uint8_t *data_mem;
	uint32_t *key_stack;

	/* Table memory */
	uint8_t memory[0] __rte_cache_aligned;
};

static int
check_params_create(struct rte_table_hash_lru_params *params)
{
	uint32_t n_buckets_min;

	/* key_size */
	if ((params->key_size == 0) ||
		(!rte_is_power_of_2(params->key_size))) {
		RTE_LOG(ERR, TABLE, "%s: key_size invalid value\n", __func__);
		return -EINVAL;
	}

	/* n_keys */
	if ((params->n_keys == 0) ||
		(!rte_is_power_of_2(params->n_keys))) {
		RTE_LOG(ERR, TABLE, "%s: n_keys invalid value\n", __func__);
		return -EINVAL;
	}

	/* n_buckets */
	n_buckets_min = (params->n_keys + KEYS_PER_BUCKET - 1) / params->n_keys;
	if ((params->n_buckets == 0) ||
		(!rte_is_power_of_2(params->n_keys)) ||
		(params->n_buckets < n_buckets_min)) {
		RTE_LOG(ERR, TABLE, "%s: n_buckets invalid value\n", __func__);
		return -EINVAL;
	}

	/* f_hash */
	if (params->f_hash == NULL) {
		RTE_LOG(ERR, TABLE, "%s: f_hash invalid value\n", __func__);
		return -EINVAL;
	}

	return 0;
}

static void *
rte_table_hash_lru_create(void *params, int socket_id, uint32_t entry_size)
{
	struct rte_table_hash_lru_params *p =
		(struct rte_table_hash_lru_params *) params;
	struct rte_table_hash *t;
	uint32_t total_size, table_meta_sz;
	uint32_t bucket_sz, key_sz, key_stack_sz, data_sz;
	uint32_t bucket_offset, key_offset, key_stack_offset, data_offset;
	uint32_t i;

	/* Check input parameters */
	if ((check_params_create(p) != 0) ||
		(!rte_is_power_of_2(entry_size)) ||
		((sizeof(struct rte_table_hash) % RTE_CACHE_LINE_SIZE) != 0) ||
		(sizeof(struct bucket) != (RTE_CACHE_LINE_SIZE / 2))) {
		return NULL;
	}

	/* Memory allocation */
	table_meta_sz = RTE_CACHE_LINE_ROUNDUP(sizeof(struct rte_table_hash));
	bucket_sz = RTE_CACHE_LINE_ROUNDUP(p->n_buckets * sizeof(struct bucket));
	key_sz = RTE_CACHE_LINE_ROUNDUP(p->n_keys * p->key_size);
	key_stack_sz = RTE_CACHE_LINE_ROUNDUP(p->n_keys * sizeof(uint32_t));
	data_sz = RTE_CACHE_LINE_ROUNDUP(p->n_keys * entry_size);
	total_size = table_meta_sz + bucket_sz + key_sz + key_stack_sz +
		data_sz;

	t = rte_zmalloc_socket("TABLE", total_size, RTE_CACHE_LINE_SIZE, socket_id);
	if (t == NULL) {
		RTE_LOG(ERR, TABLE,
			"%s: Cannot allocate %u bytes for hash table\n",
			__func__, total_size);
		return NULL;
	}
	RTE_LOG(INFO, TABLE, "%s (%u-byte key): Hash table memory footprint is "
		"%u bytes\n", __func__, p->key_size, total_size);

	/* Memory initialization */
	t->key_size = p->key_size;
	t->entry_size = entry_size;
	t->n_keys = p->n_keys;
	t->n_buckets = p->n_buckets;
	t->f_hash = p->f_hash;
	t->seed = p->seed;
	t->signature_offset = p->signature_offset;
	t->key_offset = p->key_offset;

	/* Internal */
	t->bucket_mask = t->n_buckets - 1;
	t->key_size_shl = __builtin_ctzl(p->key_size);
	t->data_size_shl = __builtin_ctzl(entry_size);

	/* Tables */
	bucket_offset = 0;
	key_offset = bucket_offset + bucket_sz;
	key_stack_offset = key_offset + key_sz;
	data_offset = key_stack_offset + key_stack_sz;

	t->buckets = (struct bucket *) &t->memory[bucket_offset];
	t->key_mem = &t->memory[key_offset];
	t->key_stack = (uint32_t *) &t->memory[key_stack_offset];
	t->data_mem = &t->memory[data_offset];

	/* Key stack */
	for (i = 0; i < t->n_keys; i++)
		t->key_stack[i] = t->n_keys - 1 - i;
	t->key_stack_tos = t->n_keys;

	/* LRU */
	for (i = 0; i < t->n_buckets; i++) {
		struct bucket *bkt = &t->buckets[i];

		lru_init(bkt);
	}

	return t;
}

static int
rte_table_hash_lru_free(void *table)
{
	struct rte_table_hash *t = (struct rte_table_hash *) table;

	/* Check input parameters */
	if (t == NULL)
		return -EINVAL;

	rte_free(t);
	return 0;
}

static int
rte_table_hash_lru_entry_add(void *table, void *key, void *entry,
	int *key_found, void **entry_ptr)
{
	struct rte_table_hash *t = (struct rte_table_hash *) table;
	struct bucket *bkt;
	uint64_t sig;
	uint32_t bkt_index, i;

	sig = t->f_hash(key, t->key_size, t->seed);
	bkt_index = sig & t->bucket_mask;
	bkt = &t->buckets[bkt_index];
	sig = (sig >> 16) | 1LLU;

	/* Key is present in the bucket */
	for (i = 0; i < KEYS_PER_BUCKET; i++) {
		uint64_t bkt_sig = (uint64_t) bkt->sig[i];
		uint32_t bkt_key_index = bkt->key_pos[i];
		uint8_t *bkt_key = &t->key_mem[bkt_key_index <<
			t->key_size_shl];

		if ((sig == bkt_sig) && (memcmp(key, bkt_key, t->key_size)
			== 0)) {
			uint8_t *data = &t->data_mem[bkt_key_index <<
				t->data_size_shl];

			memcpy(data, entry, t->entry_size);
			lru_update(bkt, i);
			*key_found = 1;
			*entry_ptr = (void *) data;
			return 0;
		}
	}

	/* Key is not present in the bucket */
	for (i = 0; i < KEYS_PER_BUCKET; i++) {
		uint64_t bkt_sig = (uint64_t) bkt->sig[i];

		if (bkt_sig == 0) {
			uint32_t bkt_key_index;
			uint8_t *bkt_key, *data;

			/* Allocate new key */
			if (t->key_stack_tos == 0) {
				/* No keys available */
				return -ENOSPC;
			}
			bkt_key_index = t->key_stack[--t->key_stack_tos];

			/* Install new key */
			bkt_key = &t->key_mem[bkt_key_index << t->key_size_shl];
			data = &t->data_mem[bkt_key_index << t->data_size_shl];

			bkt->sig[i] = (uint16_t) sig;
			bkt->key_pos[i] = bkt_key_index;
			memcpy(bkt_key, key, t->key_size);
			memcpy(data, entry, t->entry_size);
			lru_update(bkt, i);

			*key_found = 0;
			*entry_ptr = (void *) data;
			return 0;
		}
	}

	/* Bucket full */
	{
		uint64_t pos = lru_pos(bkt);
		uint32_t bkt_key_index = bkt->key_pos[pos];
		uint8_t *bkt_key = &t->key_mem[bkt_key_index <<
			t->key_size_shl];
		uint8_t *data = &t->data_mem[bkt_key_index << t->data_size_shl];

		bkt->sig[pos] = (uint16_t) sig;
		memcpy(bkt_key, key, t->key_size);
		memcpy(data, entry, t->entry_size);
		lru_update(bkt, pos);

		*key_found = 0;
		*entry_ptr = (void *) data;
		return 0;
	}
}

static int
rte_table_hash_lru_entry_delete(void *table, void *key, int *key_found,
	void *entry)
{
	struct rte_table_hash *t = (struct rte_table_hash *) table;
	struct bucket *bkt;
	uint64_t sig;
	uint32_t bkt_index, i;

	sig = t->f_hash(key, t->key_size, t->seed);
	bkt_index = sig & t->bucket_mask;
	bkt = &t->buckets[bkt_index];
	sig = (sig >> 16) | 1LLU;

	/* Key is present in the bucket */
	for (i = 0; i < KEYS_PER_BUCKET; i++) {
		uint64_t bkt_sig = (uint64_t) bkt->sig[i];
		uint32_t bkt_key_index = bkt->key_pos[i];
		uint8_t *bkt_key = &t->key_mem[bkt_key_index <<
			t->key_size_shl];

		if ((sig == bkt_sig) &&
			(memcmp(key, bkt_key, t->key_size) == 0)) {
			uint8_t *data = &t->data_mem[bkt_key_index <<
				t->data_size_shl];

			bkt->sig[i] = 0;
			t->key_stack[t->key_stack_tos++] = bkt_key_index;
			*key_found = 1;
			memcpy(entry, data, t->entry_size);
			return 0;
		}
	}

	/* Key is not present in the bucket */
	*key_found = 0;
	return 0;
}

static int rte_table_hash_lru_lookup_unoptimized(
	void *table,
	struct rte_mbuf **pkts,
	uint64_t pkts_mask,
	uint64_t *lookup_hit_mask,
	void **entries,
	int dosig)
{
	struct rte_table_hash *t = (struct rte_table_hash *) table;
	uint64_t pkts_mask_out = 0;

	__rte_unused uint32_t n_pkts_in = __builtin_popcountll(pkts_mask);
	RTE_TABLE_HASH_LRU_STATS_PKTS_IN_ADD(t, n_pkts_in);

	for ( ; pkts_mask; ) {
		struct bucket *bkt;
		struct rte_mbuf *pkt;
		uint8_t *key;
		uint64_t pkt_mask, sig;
		uint32_t pkt_index, bkt_index, i;

		pkt_index = __builtin_ctzll(pkts_mask);
		pkt_mask = 1LLU << pkt_index;
		pkts_mask &= ~pkt_mask;

		pkt = pkts[pkt_index];
		key = RTE_MBUF_METADATA_UINT8_PTR(pkt, t->key_offset);
		if (dosig)
			sig = (uint64_t) t->f_hash(key, t->key_size, t->seed);
		else
			sig = RTE_MBUF_METADATA_UINT32(pkt,
				t->signature_offset);

		bkt_index = sig & t->bucket_mask;
		bkt = &t->buckets[bkt_index];
		sig = (sig >> 16) | 1LLU;

		/* Key is present in the bucket */
		for (i = 0; i < KEYS_PER_BUCKET; i++) {
			uint64_t bkt_sig = (uint64_t) bkt->sig[i];
			uint32_t bkt_key_index = bkt->key_pos[i];
			uint8_t *bkt_key = &t->key_mem[bkt_key_index <<
				t->key_size_shl];

			if ((sig == bkt_sig) && (memcmp(key, bkt_key,
				t->key_size) == 0)) {
				uint8_t *data = &t->data_mem[bkt_key_index <<
					t->data_size_shl];

				lru_update(bkt, i);
				pkts_mask_out |= pkt_mask;
				entries[pkt_index] = (void *) data;
				break;
			}
		}
	}

	*lookup_hit_mask = pkts_mask_out;
	RTE_TABLE_HASH_LRU_STATS_PKTS_LOOKUP_MISS(t, n_pkts_in - __builtin_popcountll(pkts_mask_out));
	return 0;
}

/***
*
* mask = match bitmask
* match = at least one match
* match_many = more than one match
* match_pos = position of first match
*
* ----------------------------------------
* mask		 match	 match_many	  match_pos
* ----------------------------------------
* 0000		 0		 0			  00
* 0001		 1		 0			  00
* 0010		 1		 0			  01
* 0011		 1		 1			  00
* ----------------------------------------
* 0100		 1		 0			  10
* 0101		 1		 1			  00
* 0110		 1		 1			  01
* 0111		 1		 1			  00
* ----------------------------------------
* 1000		 1		 0			  11
* 1001		 1		 1			  00
* 1010		 1		 1			  01
* 1011		 1		 1			  00
* ----------------------------------------
* 1100		 1		 1			  10
* 1101		 1		 1			  00
* 1110		 1		 1			  01
* 1111		 1		 1			  00
* ----------------------------------------
*
* match = 1111_1111_1111_1110
* match_many = 1111_1110_1110_1000
* match_pos = 0001_0010_0001_0011__0001_0010_0001_0000
*
* match = 0xFFFELLU
* match_many = 0xFEE8LLU
* match_pos = 0x12131210LLU
*
***/

#define LUT_MATCH						0xFFFELLU
#define LUT_MATCH_MANY						0xFEE8LLU
#define LUT_MATCH_POS						0x12131210LLU

#define lookup_cmp_sig(mbuf_sig, bucket, match, match_many, match_pos)\
{								\
	uint64_t bucket_sig[4], mask[4], mask_all;		\
								\
	bucket_sig[0] = bucket->sig[0];				\
	bucket_sig[1] = bucket->sig[1];				\
	bucket_sig[2] = bucket->sig[2];				\
	bucket_sig[3] = bucket->sig[3];				\
								\
	bucket_sig[0] ^= mbuf_sig;				\
	bucket_sig[1] ^= mbuf_sig;				\
	bucket_sig[2] ^= mbuf_sig;				\
	bucket_sig[3] ^= mbuf_sig;				\
								\
	mask[0] = 0;						\
	mask[1] = 0;						\
	mask[2] = 0;						\
	mask[3] = 0;						\
								\
	if (bucket_sig[0] == 0)					\
		mask[0] = 1;					\
	if (bucket_sig[1] == 0)					\
		mask[1] = 2;					\
	if (bucket_sig[2] == 0)					\
		mask[2] = 4;					\
	if (bucket_sig[3] == 0)					\
		mask[3] = 8;					\
								\
	mask_all = (mask[0] | mask[1]) | (mask[2] | mask[3]);	\
								\
	match = (LUT_MATCH >> mask_all) & 1;			\
	match_many = (LUT_MATCH_MANY >> mask_all) & 1;		\
	match_pos = (LUT_MATCH_POS >> (mask_all << 1)) & 3;	\
}

#define lookup_cmp_key(mbuf, key, match_key, f)			\
{								\
	uint64_t *pkt_key = RTE_MBUF_METADATA_UINT64_PTR(mbuf, f->key_offset);\
	uint64_t *bkt_key = (uint64_t *) key;			\
								\
	switch (f->key_size) {					\
	case 8:							\
	{							\
		uint64_t xor = pkt_key[0] ^ bkt_key[0];		\
		match_key = 0;					\
		if (xor == 0)					\
			match_key = 1;				\
	}							\
	break;							\
								\
	case 16:						\
	{							\
		uint64_t xor[2], or;				\
								\
		xor[0] = pkt_key[0] ^ bkt_key[0];		\
		xor[1] = pkt_key[1] ^ bkt_key[1];		\
		or = xor[0] | xor[1];				\
		match_key = 0;					\
		if (or == 0)					\
			match_key = 1;				\
	}							\
	break;							\
								\
	case 32:						\
	{							\
		uint64_t xor[4], or;				\
								\
		xor[0] = pkt_key[0] ^ bkt_key[0];		\
		xor[1] = pkt_key[1] ^ bkt_key[1];		\
		xor[2] = pkt_key[2] ^ bkt_key[2];		\
		xor[3] = pkt_key[3] ^ bkt_key[3];		\
		or = xor[0] | xor[1] | xor[2] | xor[3];		\
		match_key = 0;					\
		if (or == 0)					\
			match_key = 1;				\
	}							\
	break;							\
								\
	case 64:						\
	{							\
		uint64_t xor[8], or;				\
								\
		xor[0] = pkt_key[0] ^ bkt_key[0];		\
		xor[1] = pkt_key[1] ^ bkt_key[1];		\
		xor[2] = pkt_key[2] ^ bkt_key[2];		\
		xor[3] = pkt_key[3] ^ bkt_key[3];		\
		xor[4] = pkt_key[4] ^ bkt_key[4];		\
		xor[5] = pkt_key[5] ^ bkt_key[5];		\
		xor[6] = pkt_key[6] ^ bkt_key[6];		\
		xor[7] = pkt_key[7] ^ bkt_key[7];		\
		or = xor[0] | xor[1] | xor[2] | xor[3] |	\
			xor[4] | xor[5] | xor[6] | xor[7];	\
		match_key = 0;					\
		if (or == 0)					\
			match_key = 1;				\
	}							\
	break;							\
								\
	default:						\
		match_key = 0;					\
		if (memcmp(pkt_key, bkt_key, f->key_size) == 0)	\
			match_key = 1;				\
	}							\
}

#define lookup2_stage0(t, g, pkts, pkts_mask, pkt00_index, pkt01_index)\
{								\
	uint64_t pkt00_mask, pkt01_mask;			\
	struct rte_mbuf *mbuf00, *mbuf01;			\
	uint32_t key_offset = t->key_offset;		\
								\
	pkt00_index = __builtin_ctzll(pkts_mask);		\
	pkt00_mask = 1LLU << pkt00_index;			\
	pkts_mask &= ~pkt00_mask;				\
	mbuf00 = pkts[pkt00_index];				\
								\
	pkt01_index = __builtin_ctzll(pkts_mask);		\
	pkt01_mask = 1LLU << pkt01_index;			\
	pkts_mask &= ~pkt01_mask;				\
	mbuf01 = pkts[pkt01_index];				\
								\
	rte_prefetch0(RTE_MBUF_METADATA_UINT8_PTR(mbuf00, key_offset));\
	rte_prefetch0(RTE_MBUF_METADATA_UINT8_PTR(mbuf01, key_offset));\
}

#define lookup2_stage0_with_odd_support(t, g, pkts, pkts_mask, pkt00_index, \
	pkt01_index)						\
{								\
	uint64_t pkt00_mask, pkt01_mask;			\
	struct rte_mbuf *mbuf00, *mbuf01;			\
	uint32_t key_offset = t->key_offset;		\
								\
	pkt00_index = __builtin_ctzll(pkts_mask);		\
	pkt00_mask = 1LLU << pkt00_index;			\
	pkts_mask &= ~pkt00_mask;				\
	mbuf00 = pkts[pkt00_index];				\
								\
	pkt01_index = __builtin_ctzll(pkts_mask);		\
	if (pkts_mask == 0)					\
		pkt01_index = pkt00_index;			\
								\
	pkt01_mask = 1LLU << pkt01_index;			\
	pkts_mask &= ~pkt01_mask;				\
	mbuf01 = pkts[pkt01_index];				\
								\
	rte_prefetch0(RTE_MBUF_METADATA_UINT8_PTR(mbuf00, key_offset));\
	rte_prefetch0(RTE_MBUF_METADATA_UINT8_PTR(mbuf01, key_offset));\
}

#define lookup2_stage1(t, g, pkts, pkt10_index, pkt11_index)	\
{								\
	struct grinder *g10, *g11;				\
	uint64_t sig10, sig11, bkt10_index, bkt11_index;	\
	struct rte_mbuf *mbuf10, *mbuf11;			\
	struct bucket *bkt10, *bkt11, *buckets = t->buckets;	\
	uint64_t bucket_mask = t->bucket_mask;			\
	uint32_t signature_offset = t->signature_offset;	\
								\
	mbuf10 = pkts[pkt10_index];				\
	sig10 = (uint64_t) RTE_MBUF_METADATA_UINT32(mbuf10, signature_offset);\
	bkt10_index = sig10 & bucket_mask;			\
	bkt10 = &buckets[bkt10_index];				\
								\
	mbuf11 = pkts[pkt11_index];				\
	sig11 = (uint64_t) RTE_MBUF_METADATA_UINT32(mbuf11, signature_offset);\
	bkt11_index = sig11 & bucket_mask;			\
	bkt11 = &buckets[bkt11_index];				\
								\
	rte_prefetch0(bkt10);					\
	rte_prefetch0(bkt11);					\
								\
	g10 = &g[pkt10_index];					\
	g10->sig = sig10;					\
	g10->bkt = bkt10;					\
								\
	g11 = &g[pkt11_index];					\
	g11->sig = sig11;					\
	g11->bkt = bkt11;					\
}

#define lookup2_stage1_dosig(t, g, pkts, pkt10_index, pkt11_index)\
{								\
	struct grinder *g10, *g11;				\
	uint64_t sig10, sig11, bkt10_index, bkt11_index;	\
	struct rte_mbuf *mbuf10, *mbuf11;			\
	struct bucket *bkt10, *bkt11, *buckets = t->buckets;	\
	uint8_t *key10, *key11;					\
	uint64_t bucket_mask = t->bucket_mask;			\
	rte_table_hash_op_hash f_hash = t->f_hash;		\
	uint64_t seed = t->seed;				\
	uint32_t key_size = t->key_size;			\
	uint32_t key_offset = t->key_offset;			\
								\
	mbuf10 = pkts[pkt10_index];				\
	key10 = RTE_MBUF_METADATA_UINT8_PTR(mbuf10, key_offset);\
	sig10 = (uint64_t) f_hash(key10, key_size, seed);	\
	bkt10_index = sig10 & bucket_mask;			\
	bkt10 = &buckets[bkt10_index];				\
								\
	mbuf11 = pkts[pkt11_index];				\
	key11 = RTE_MBUF_METADATA_UINT8_PTR(mbuf11, key_offset);\
	sig11 = (uint64_t) f_hash(key11, key_size, seed);	\
	bkt11_index = sig11 & bucket_mask;			\
	bkt11 = &buckets[bkt11_index];				\
								\
	rte_prefetch0(bkt10);					\
	rte_prefetch0(bkt11);					\
								\
	g10 = &g[pkt10_index];					\
	g10->sig = sig10;					\
	g10->bkt = bkt10;					\
								\
	g11 = &g[pkt11_index];					\
	g11->sig = sig11;					\
	g11->bkt = bkt11;					\
}

#define lookup2_stage2(t, g, pkt20_index, pkt21_index, pkts_mask_match_many)\
{								\
	struct grinder *g20, *g21;				\
	uint64_t sig20, sig21;					\
	struct bucket *bkt20, *bkt21;				\
	uint8_t *key20, *key21, *key_mem = t->key_mem;		\
	uint64_t match20, match21, match_many20, match_many21;	\
	uint64_t match_pos20, match_pos21;			\
	uint32_t key20_index, key21_index, key_size_shl = t->key_size_shl;\
								\
	g20 = &g[pkt20_index];					\
	sig20 = g20->sig;					\
	bkt20 = g20->bkt;					\
	sig20 = (sig20 >> 16) | 1LLU;				\
	lookup_cmp_sig(sig20, bkt20, match20, match_many20, match_pos20);\
	match20 <<= pkt20_index;				\
	match_many20 <<= pkt20_index;				\
	key20_index = bkt20->key_pos[match_pos20];		\
	key20 = &key_mem[key20_index << key_size_shl];		\
								\
	g21 = &g[pkt21_index];					\
	sig21 = g21->sig;					\
	bkt21 = g21->bkt;					\
	sig21 = (sig21 >> 16) | 1LLU;				\
	lookup_cmp_sig(sig21, bkt21, match21, match_many21, match_pos21);\
	match21 <<= pkt21_index;				\
	match_many21 <<= pkt21_index;				\
	key21_index = bkt21->key_pos[match_pos21];		\
	key21 = &key_mem[key21_index << key_size_shl];		\
								\
	rte_prefetch0(key20);					\
	rte_prefetch0(key21);					\
								\
	pkts_mask_match_many |= match_many20 | match_many21;	\
								\
	g20->match = match20;					\
	g20->match_pos = match_pos20;				\
	g20->key_index = key20_index;				\
								\
	g21->match = match21;					\
	g21->match_pos = match_pos21;				\
	g21->key_index = key21_index;				\
}

#define lookup2_stage3(t, g, pkts, pkt30_index, pkt31_index, pkts_mask_out, \
	entries)						\
{								\
	struct grinder *g30, *g31;				\
	struct rte_mbuf *mbuf30, *mbuf31;			\
	struct bucket *bkt30, *bkt31;				\
	uint8_t *key30, *key31, *key_mem = t->key_mem;		\
	uint8_t *data30, *data31, *data_mem = t->data_mem;	\
	uint64_t match30, match31, match_pos30, match_pos31;	\
	uint64_t match_key30, match_key31, match_keys;		\
	uint32_t key30_index, key31_index;			\
	uint32_t key_size_shl = t->key_size_shl;		\
	uint32_t data_size_shl = t->data_size_shl;		\
								\
	mbuf30 = pkts[pkt30_index];				\
	g30 = &g[pkt30_index];					\
	bkt30 = g30->bkt;					\
	match30 = g30->match;					\
	match_pos30 = g30->match_pos;				\
	key30_index = g30->key_index;				\
	key30 = &key_mem[key30_index << key_size_shl];		\
	lookup_cmp_key(mbuf30, key30, match_key30, t);		\
	match_key30 <<= pkt30_index;				\
	match_key30 &= match30;					\
	data30 = &data_mem[key30_index << data_size_shl];	\
	entries[pkt30_index] = data30;				\
								\
	mbuf31 = pkts[pkt31_index];				\
	g31 = &g[pkt31_index];					\
	bkt31 = g31->bkt;					\
	match31 = g31->match;					\
	match_pos31 = g31->match_pos;				\
	key31_index = g31->key_index;				\
	key31 = &key_mem[key31_index << key_size_shl];		\
	lookup_cmp_key(mbuf31, key31, match_key31, t);		\
	match_key31 <<= pkt31_index;				\
	match_key31 &= match31;					\
	data31 = &data_mem[key31_index << data_size_shl];	\
	entries[pkt31_index] = data31;				\
								\
	rte_prefetch0(data30);					\
	rte_prefetch0(data31);					\
								\
	match_keys = match_key30 | match_key31;			\
	pkts_mask_out |= match_keys;				\
								\
	if (match_key30 == 0)					\
		match_pos30 = 4;				\
	lru_update(bkt30, match_pos30);				\
								\
	if (match_key31 == 0)					\
		match_pos31 = 4;				\
	lru_update(bkt31, match_pos31);				\
}

/***
* The lookup function implements a 4-stage pipeline, with each stage processing
* two different packets. The purpose of pipelined implementation is to hide the
* latency of prefetching the data structures and loosen the data dependency
* between instructions.
*
*   p00  _______   p10  _______   p20  _______   p30  _______
* ----->|       |----->|       |----->|       |----->|       |----->
*       |   0   |      |   1   |      |   2   |      |   3   |
* ----->|_______|----->|_______|----->|_______|----->|_______|----->
*   p01            p11            p21            p31
*
* The naming convention is:
*	  pXY = packet Y of stage X, X = 0 .. 3, Y = 0 .. 1
*
***/
static int rte_table_hash_lru_lookup(
	void *table,
	struct rte_mbuf **pkts,
	uint64_t pkts_mask,
	uint64_t *lookup_hit_mask,
	void **entries)
{
	struct rte_table_hash *t = (struct rte_table_hash *) table;
	struct grinder *g = t->grinders;
	uint64_t pkt00_index, pkt01_index, pkt10_index, pkt11_index;
	uint64_t pkt20_index, pkt21_index, pkt30_index, pkt31_index;
	uint64_t pkts_mask_out = 0, pkts_mask_match_many = 0;
	int status = 0;

	__rte_unused uint32_t n_pkts_in = __builtin_popcountll(pkts_mask);
	RTE_TABLE_HASH_LRU_STATS_PKTS_IN_ADD(t, n_pkts_in);

	/* Cannot run the pipeline with less than 7 packets */
	if (__builtin_popcountll(pkts_mask) < 7)
		return rte_table_hash_lru_lookup_unoptimized(table, pkts,
			pkts_mask, lookup_hit_mask, entries, 0);

	/* Pipeline stage 0 */
	lookup2_stage0(t, g, pkts, pkts_mask, pkt00_index, pkt01_index);

	/* Pipeline feed */
	pkt10_index = pkt00_index;
	pkt11_index = pkt01_index;

	/* Pipeline stage 0 */
	lookup2_stage0(t, g, pkts, pkts_mask, pkt00_index, pkt01_index);

	/* Pipeline stage 1 */
	lookup2_stage1(t, g, pkts, pkt10_index, pkt11_index);

	/* Pipeline feed */
	pkt20_index = pkt10_index;
	pkt21_index = pkt11_index;
	pkt10_index = pkt00_index;
	pkt11_index = pkt01_index;

	/* Pipeline stage 0 */
	lookup2_stage0(t, g, pkts, pkts_mask, pkt00_index, pkt01_index);

	/* Pipeline stage 1 */
	lookup2_stage1(t, g, pkts, pkt10_index, pkt11_index);

	/* Pipeline stage 2 */
	lookup2_stage2(t, g, pkt20_index, pkt21_index, pkts_mask_match_many);

	/*
	* Pipeline run
	*
	*/
	for ( ; pkts_mask; ) {
		/* Pipeline feed */
		pkt30_index = pkt20_index;
		pkt31_index = pkt21_index;
		pkt20_index = pkt10_index;
		pkt21_index = pkt11_index;
		pkt10_index = pkt00_index;
		pkt11_index = pkt01_index;

		/* Pipeline stage 0 */
		lookup2_stage0_with_odd_support(t, g, pkts, pkts_mask,
			pkt00_index, pkt01_index);

		/* Pipeline stage 1 */
		lookup2_stage1(t, g, pkts, pkt10_index, pkt11_index);

		/* Pipeline stage 2 */
		lookup2_stage2(t, g, pkt20_index, pkt21_index,
			pkts_mask_match_many);

		/* Pipeline stage 3 */
		lookup2_stage3(t, g, pkts, pkt30_index, pkt31_index,
			pkts_mask_out, entries);
	}

	/* Pipeline feed */
	pkt30_index = pkt20_index;
	pkt31_index = pkt21_index;
	pkt20_index = pkt10_index;
	pkt21_index = pkt11_index;
	pkt10_index = pkt00_index;
	pkt11_index = pkt01_index;

	/* Pipeline stage 1 */
	lookup2_stage1(t, g, pkts, pkt10_index, pkt11_index);

	/* Pipeline stage 2 */
	lookup2_stage2(t, g, pkt20_index, pkt21_index, pkts_mask_match_many);

	/* Pipeline stage 3 */
	lookup2_stage3(t, g, pkts, pkt30_index, pkt31_index, pkts_mask_out,
		entries);

	/* Pipeline feed */
	pkt30_index = pkt20_index;
	pkt31_index = pkt21_index;
	pkt20_index = pkt10_index;
	pkt21_index = pkt11_index;

	/* Pipeline stage 2 */
	lookup2_stage2(t, g, pkt20_index, pkt21_index, pkts_mask_match_many);

	/* Pipeline stage 3 */
	lookup2_stage3(t, g, pkts, pkt30_index, pkt31_index, pkts_mask_out,
		entries);

	/* Pipeline feed */
	pkt30_index = pkt20_index;
	pkt31_index = pkt21_index;

	/* Pipeline stage 3 */
	lookup2_stage3(t, g, pkts, pkt30_index, pkt31_index, pkts_mask_out,
		entries);

	/* Slow path */
	pkts_mask_match_many &= ~pkts_mask_out;
	if (pkts_mask_match_many) {
		uint64_t pkts_mask_out_slow = 0;

		status = rte_table_hash_lru_lookup_unoptimized(table, pkts,
			pkts_mask_match_many, &pkts_mask_out_slow, entries, 0);
		pkts_mask_out |= pkts_mask_out_slow;
	}

	*lookup_hit_mask = pkts_mask_out;
	RTE_TABLE_HASH_LRU_STATS_PKTS_LOOKUP_MISS(t, n_pkts_in - __builtin_popcountll(pkts_mask_out));
	return status;
}

static int rte_table_hash_lru_lookup_dosig(
	void *table,
	struct rte_mbuf **pkts,
	uint64_t pkts_mask,
	uint64_t *lookup_hit_mask,
	void **entries)
{
	struct rte_table_hash *t = (struct rte_table_hash *) table;
	struct grinder *g = t->grinders;
	uint64_t pkt00_index, pkt01_index, pkt10_index, pkt11_index;
	uint64_t pkt20_index, pkt21_index, pkt30_index, pkt31_index;
	uint64_t pkts_mask_out = 0, pkts_mask_match_many = 0;
	int status = 0;

	__rte_unused uint32_t n_pkts_in = __builtin_popcountll(pkts_mask);
	RTE_TABLE_HASH_LRU_STATS_PKTS_IN_ADD(t, n_pkts_in);

	/* Cannot run the pipeline with less than 7 packets */
	if (__builtin_popcountll(pkts_mask) < 7)
		return rte_table_hash_lru_lookup_unoptimized(table, pkts,
			pkts_mask, lookup_hit_mask, entries, 1);

	/* Pipeline stage 0 */
	lookup2_stage0(t, g, pkts, pkts_mask, pkt00_index, pkt01_index);

	/* Pipeline feed */
	pkt10_index = pkt00_index;
	pkt11_index = pkt01_index;

	/* Pipeline stage 0 */
	lookup2_stage0(t, g, pkts, pkts_mask, pkt00_index, pkt01_index);

	/* Pipeline stage 1 */
	lookup2_stage1_dosig(t, g, pkts, pkt10_index, pkt11_index);

	/* Pipeline feed */
	pkt20_index = pkt10_index;
	pkt21_index = pkt11_index;
	pkt10_index = pkt00_index;
	pkt11_index = pkt01_index;

	/* Pipeline stage 0 */
	lookup2_stage0(t, g, pkts, pkts_mask, pkt00_index, pkt01_index);

	/* Pipeline stage 1 */
	lookup2_stage1_dosig(t, g, pkts, pkt10_index, pkt11_index);

	/* Pipeline stage 2 */
	lookup2_stage2(t, g, pkt20_index, pkt21_index, pkts_mask_match_many);

	/*
	* Pipeline run
	*
	*/
	for ( ; pkts_mask; ) {
		/* Pipeline feed */
		pkt30_index = pkt20_index;
		pkt31_index = pkt21_index;
		pkt20_index = pkt10_index;
		pkt21_index = pkt11_index;
		pkt10_index = pkt00_index;
		pkt11_index = pkt01_index;

		/* Pipeline stage 0 */
		lookup2_stage0_with_odd_support(t, g, pkts, pkts_mask,
			pkt00_index, pkt01_index);

		/* Pipeline stage 1 */
		lookup2_stage1_dosig(t, g, pkts, pkt10_index, pkt11_index);

		/* Pipeline stage 2 */
		lookup2_stage2(t, g, pkt20_index, pkt21_index,
			pkts_mask_match_many);

		/* Pipeline stage 3 */
		lookup2_stage3(t, g, pkts, pkt30_index, pkt31_index,
			pkts_mask_out, entries);
	}

	/* Pipeline feed */
	pkt30_index = pkt20_index;
	pkt31_index = pkt21_index;
	pkt20_index = pkt10_index;
	pkt21_index = pkt11_index;
	pkt10_index = pkt00_index;
	pkt11_index = pkt01_index;

	/* Pipeline stage 1 */
	lookup2_stage1_dosig(t, g, pkts, pkt10_index, pkt11_index);

	/* Pipeline stage 2 */
	lookup2_stage2(t, g, pkt20_index, pkt21_index, pkts_mask_match_many);

	/* Pipeline stage 3 */
	lookup2_stage3(t, g, pkts, pkt30_index, pkt31_index, pkts_mask_out,
		entries);

	/* Pipeline feed */
	pkt30_index = pkt20_index;
	pkt31_index = pkt21_index;
	pkt20_index = pkt10_index;
	pkt21_index = pkt11_index;

	/* Pipeline stage 2 */
	lookup2_stage2(t, g, pkt20_index, pkt21_index, pkts_mask_match_many);

	/* Pipeline stage 3 */
	lookup2_stage3(t, g, pkts, pkt30_index, pkt31_index, pkts_mask_out,
		entries);

	/* Pipeline feed */
	pkt30_index = pkt20_index;
	pkt31_index = pkt21_index;

	/* Pipeline stage 3 */
	lookup2_stage3(t, g, pkts, pkt30_index, pkt31_index, pkts_mask_out,
		entries);

	/* Slow path */
	pkts_mask_match_many &= ~pkts_mask_out;
	if (pkts_mask_match_many) {
		uint64_t pkts_mask_out_slow = 0;

		status = rte_table_hash_lru_lookup_unoptimized(table, pkts,
			pkts_mask_match_many, &pkts_mask_out_slow, entries, 1);
		pkts_mask_out |= pkts_mask_out_slow;
	}

	*lookup_hit_mask = pkts_mask_out;
	RTE_TABLE_HASH_LRU_STATS_PKTS_LOOKUP_MISS(t, n_pkts_in - __builtin_popcountll(pkts_mask_out));
	return status;
}

static int
rte_table_hash_lru_stats_read(void *table, struct rte_table_stats *stats, int clear)
{
	struct rte_table_hash *t = (struct rte_table_hash *) table;

	if (stats != NULL)
		memcpy(stats, &t->stats, sizeof(t->stats));

	if (clear)
		memset(&t->stats, 0, sizeof(t->stats));

	return 0;
}

struct rte_table_ops rte_table_hash_lru_ops = {
	.f_create = rte_table_hash_lru_create,
	.f_free = rte_table_hash_lru_free,
	.f_add = rte_table_hash_lru_entry_add,
	.f_delete = rte_table_hash_lru_entry_delete,
	.f_add_bulk = NULL,
	.f_delete_bulk = NULL,
	.f_lookup = rte_table_hash_lru_lookup,
	.f_stats = rte_table_hash_lru_stats_read,
};

struct rte_table_ops rte_table_hash_lru_dosig_ops = {
	.f_create = rte_table_hash_lru_create,
	.f_free = rte_table_hash_lru_free,
	.f_add = rte_table_hash_lru_entry_add,
	.f_delete = rte_table_hash_lru_entry_delete,
	.f_add_bulk = NULL,
	.f_delete_bulk = NULL,
	.f_lookup = rte_table_hash_lru_lookup_dosig,
	.f_stats = rte_table_hash_lru_stats_read,
};