aboutsummaryrefslogtreecommitdiffstats
path: root/test/test/test_timer.c
blob: 2f6525a50622917fa5986eb86f32f49109146876 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
/*-
 *   BSD LICENSE
 *
 *   Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
 *   All rights reserved.
 *
 *   Redistribution and use in source and binary forms, with or without
 *   modification, are permitted provided that the following conditions
 *   are met:
 *
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in
 *       the documentation and/or other materials provided with the
 *       distribution.
 *     * Neither the name of Intel Corporation nor the names of its
 *       contributors may be used to endorse or promote products derived
 *       from this software without specific prior written permission.
 *
 *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "test.h"

/*
 * Timer
 * =====
 *
 * #. Stress test 1.
 *
 *    The objective of the timer stress tests is to check that there are no
 *    race conditions in list and status management. This test launches,
 *    resets and stops the timer very often on many cores at the same
 *    time.
 *
 *    - Only one timer is used for this test.
 *    - On each core, the rte_timer_manage() function is called from the main
 *      loop every 3 microseconds.
 *    - In the main loop, the timer may be reset (randomly, with a
 *      probability of 0.5 %) 100 microseconds later on a random core, or
 *      stopped (with a probability of 0.5 % also).
 *    - In callback, the timer is can be reset (randomly, with a
 *      probability of 0.5 %) 100 microseconds later on the same core or
 *      on another core (same probability), or stopped (same
 *      probability).
 *
 * # Stress test 2.
 *
 *    The objective of this test is similar to the first in that it attempts
 *    to find if there are any race conditions in the timer library. However,
 *    it is less complex in terms of operations performed and duration, as it
 *    is designed to have a predictable outcome that can be tested.
 *
 *    - A set of timers is initialized for use by the test
 *    - All cores then simultaneously are set to schedule all the timers at
 *      the same time, so conflicts should occur.
 *    - Then there is a delay while we wait for the timers to expire
 *    - Then the master lcore calls timer_manage() and we check that all
 *      timers have had their callbacks called exactly once - no more no less.
 *    - Then we repeat the process, except after setting up the timers, we have
 *      all cores randomly reschedule them.
 *    - Again we check that the expected number of callbacks has occurred when
 *      we call timer-manage.
 *
 * #. Basic test.
 *
 *    This test performs basic functional checks of the timers. The test
 *    uses four different timers that are loaded and stopped under
 *    specific conditions in specific contexts.
 *
 *    - Four timers are used for this test.
 *    - On each core, the rte_timer_manage() function is called from main loop
 *      every 3 microseconds.
 *
 *    The autotest python script checks that the behavior is correct:
 *
 *    - timer0
 *
 *      - At initialization, timer0 is loaded by the master core, on master core
 *        in "single" mode (time = 1 second).
 *      - In the first 19 callbacks, timer0 is reloaded on the same core,
 *        then, it is explicitly stopped at the 20th call.
 *      - At t=25s, timer0 is reloaded once by timer2.
 *
 *    - timer1
 *
 *      - At initialization, timer1 is loaded by the master core, on the
 *        master core in "single" mode (time = 2 seconds).
 *      - In the first 9 callbacks, timer1 is reloaded on another
 *        core. After the 10th callback, timer1 is not reloaded anymore.
 *
 *    - timer2
 *
 *      - At initialization, timer2 is loaded by the master core, on the
 *        master core in "periodical" mode (time = 1 second).
 *      - In the callback, when t=25s, it stops timer3 and reloads timer0
 *        on the current core.
 *
 *    - timer3
 *
 *      - At initialization, timer3 is loaded by the master core, on
 *        another core in "periodical" mode (time = 1 second).
 *      - It is stopped at t=25s by timer2.
 */

#include <stdio.h>
#include <stdarg.h>
#include <string.h>
#include <stdlib.h>
#include <stdint.h>
#include <inttypes.h>
#include <sys/queue.h>
#include <math.h>

#include <rte_common.h>
#include <rte_log.h>
#include <rte_memory.h>
#include <rte_memzone.h>
#include <rte_launch.h>
#include <rte_cycles.h>
#include <rte_eal.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include <rte_atomic.h>
#include <rte_timer.h>
#include <rte_random.h>
#include <rte_malloc.h>

#define TEST_DURATION_S 1 /* in seconds */
#define NB_TIMER 4

#define RTE_LOGTYPE_TESTTIMER RTE_LOGTYPE_USER3

static volatile uint64_t end_time;
static volatile int test_failed;

struct mytimerinfo {
	struct rte_timer tim;
	unsigned id;
	unsigned count;
};

static struct mytimerinfo mytiminfo[NB_TIMER];

static void timer_basic_cb(struct rte_timer *tim, void *arg);

static void
mytimer_reset(struct mytimerinfo *timinfo, uint64_t ticks,
	      enum rte_timer_type type, unsigned tim_lcore,
	      rte_timer_cb_t fct)
{
	rte_timer_reset_sync(&timinfo->tim, ticks, type, tim_lcore,
			     fct, timinfo);
}

/* timer callback for stress tests */
static void
timer_stress_cb(__attribute__((unused)) struct rte_timer *tim,
		__attribute__((unused)) void *arg)
{
	long r;
	unsigned lcore_id = rte_lcore_id();
	uint64_t hz = rte_get_timer_hz();

	if (rte_timer_pending(tim))
		return;

	r = rte_rand();
	if ((r & 0xff) == 0) {
		mytimer_reset(&mytiminfo[0], hz, SINGLE, lcore_id,
			      timer_stress_cb);
	}
	else if ((r & 0xff) == 1) {
		mytimer_reset(&mytiminfo[0], hz, SINGLE,
			      rte_get_next_lcore(lcore_id, 0, 1),
			      timer_stress_cb);
	}
	else if ((r & 0xff) == 2) {
		rte_timer_stop(&mytiminfo[0].tim);
	}
}

static int
timer_stress_main_loop(__attribute__((unused)) void *arg)
{
	uint64_t hz = rte_get_timer_hz();
	unsigned lcore_id = rte_lcore_id();
	uint64_t cur_time;
	int64_t diff = 0;
	long r;

	while (diff >= 0) {

		/* call the timer handler on each core */
		rte_timer_manage();

		/* simulate the processing of a packet
		 * (1 us = 2000 cycles at 2 Ghz) */
		rte_delay_us(1);

		/* randomly stop or reset timer */
		r = rte_rand();
		lcore_id = rte_get_next_lcore(lcore_id, 0, 1);
		if ((r & 0xff) == 0) {
			/* 100 us */
			mytimer_reset(&mytiminfo[0], hz/10000, SINGLE, lcore_id,
				      timer_stress_cb);
		}
		else if ((r & 0xff) == 1) {
			rte_timer_stop_sync(&mytiminfo[0].tim);
		}
		cur_time = rte_get_timer_cycles();
		diff = end_time - cur_time;
	}

	lcore_id = rte_lcore_id();
	RTE_LOG(INFO, TESTTIMER, "core %u finished\n", lcore_id);

	return 0;
}

/* Need to synchronize slave lcores through multiple steps. */
enum { SLAVE_WAITING = 1, SLAVE_RUN_SIGNAL, SLAVE_RUNNING, SLAVE_FINISHED };
static rte_atomic16_t slave_state[RTE_MAX_LCORE];

static void
master_init_slaves(void)
{
	unsigned i;

	RTE_LCORE_FOREACH_SLAVE(i) {
		rte_atomic16_set(&slave_state[i], SLAVE_WAITING);
	}
}

static void
master_start_slaves(void)
{
	unsigned i;

	RTE_LCORE_FOREACH_SLAVE(i) {
		rte_atomic16_set(&slave_state[i], SLAVE_RUN_SIGNAL);
	}
	RTE_LCORE_FOREACH_SLAVE(i) {
		while (rte_atomic16_read(&slave_state[i]) != SLAVE_RUNNING)
			rte_pause();
	}
}

static void
master_wait_for_slaves(void)
{
	unsigned i;

	RTE_LCORE_FOREACH_SLAVE(i) {
		while (rte_atomic16_read(&slave_state[i]) != SLAVE_FINISHED)
			rte_pause();
	}
}

static void
slave_wait_to_start(void)
{
	unsigned lcore_id = rte_lcore_id();

	while (rte_atomic16_read(&slave_state[lcore_id]) != SLAVE_RUN_SIGNAL)
		rte_pause();
	rte_atomic16_set(&slave_state[lcore_id], SLAVE_RUNNING);
}

static void
slave_finish(void)
{
	unsigned lcore_id = rte_lcore_id();

	rte_atomic16_set(&slave_state[lcore_id], SLAVE_FINISHED);
}


static volatile int cb_count = 0;

/* callback for second stress test. will only be called
 * on master lcore */
static void
timer_stress2_cb(struct rte_timer *tim __rte_unused, void *arg __rte_unused)
{
	cb_count++;
}

#define NB_STRESS2_TIMERS 8192

static int
timer_stress2_main_loop(__attribute__((unused)) void *arg)
{
	static struct rte_timer *timers;
	int i, ret;
	uint64_t delay = rte_get_timer_hz() / 20;
	unsigned lcore_id = rte_lcore_id();
	unsigned master = rte_get_master_lcore();
	int32_t my_collisions = 0;
	static rte_atomic32_t collisions;

	if (lcore_id == master) {
		cb_count = 0;
		test_failed = 0;
		rte_atomic32_set(&collisions, 0);
		master_init_slaves();
		timers = rte_malloc(NULL, sizeof(*timers) * NB_STRESS2_TIMERS, 0);
		if (timers == NULL) {
			printf("Test Failed\n");
			printf("- Cannot allocate memory for timers\n" );
			test_failed = 1;
			master_start_slaves();
			goto cleanup;
		}
		for (i = 0; i < NB_STRESS2_TIMERS; i++)
			rte_timer_init(&timers[i]);
		master_start_slaves();
	} else {
		slave_wait_to_start();
		if (test_failed)
			goto cleanup;
	}

	/* have all cores schedule all timers on master lcore */
	for (i = 0; i < NB_STRESS2_TIMERS; i++) {
		ret = rte_timer_reset(&timers[i], delay, SINGLE, master,
				timer_stress2_cb, NULL);
		/* there will be collisions when multiple cores simultaneously
		 * configure the same timers */
		if (ret != 0)
			my_collisions++;
	}
	if (my_collisions != 0)
		rte_atomic32_add(&collisions, my_collisions);

	/* wait long enough for timers to expire */
	rte_delay_ms(100);

	/* all cores rendezvous */
	if (lcore_id == master) {
		master_wait_for_slaves();
	} else {
		slave_finish();
	}

	/* now check that we get the right number of callbacks */
	if (lcore_id == master) {
		my_collisions = rte_atomic32_read(&collisions);
		if (my_collisions != 0)
			printf("- %d timer reset collisions (OK)\n", my_collisions);
		rte_timer_manage();
		if (cb_count != NB_STRESS2_TIMERS) {
			printf("Test Failed\n");
			printf("- Stress test 2, part 1 failed\n");
			printf("- Expected %d callbacks, got %d\n", NB_STRESS2_TIMERS,
					cb_count);
			test_failed = 1;
			master_start_slaves();
			goto cleanup;
		}
		cb_count = 0;

		/* proceed */
		master_start_slaves();
	} else {
		/* proceed */
		slave_wait_to_start();
		if (test_failed)
			goto cleanup;
	}

	/* now test again, just stop and restart timers at random after init*/
	for (i = 0; i < NB_STRESS2_TIMERS; i++)
		rte_timer_reset(&timers[i], delay, SINGLE, master,
				timer_stress2_cb, NULL);

	/* pick random timer to reset, stopping them first half the time */
	for (i = 0; i < 100000; i++) {
		int r = rand() % NB_STRESS2_TIMERS;
		if (i % 2)
			rte_timer_stop(&timers[r]);
		rte_timer_reset(&timers[r], delay, SINGLE, master,
				timer_stress2_cb, NULL);
	}

	/* wait long enough for timers to expire */
	rte_delay_ms(100);

	/* now check that we get the right number of callbacks */
	if (lcore_id == master) {
		master_wait_for_slaves();

		rte_timer_manage();
		if (cb_count != NB_STRESS2_TIMERS) {
			printf("Test Failed\n");
			printf("- Stress test 2, part 2 failed\n");
			printf("- Expected %d callbacks, got %d\n", NB_STRESS2_TIMERS,
					cb_count);
			test_failed = 1;
		} else {
			printf("Test OK\n");
		}
	}

cleanup:
	if (lcore_id == master) {
		master_wait_for_slaves();
		if (timers != NULL) {
			rte_free(timers);
			timers = NULL;
		}
	} else {
		slave_finish();
	}

	return 0;
}

/* timer callback for basic tests */
static void
timer_basic_cb(struct rte_timer *tim, void *arg)
{
	struct mytimerinfo *timinfo = arg;
	uint64_t hz = rte_get_timer_hz();
	unsigned lcore_id = rte_lcore_id();
	uint64_t cur_time = rte_get_timer_cycles();

	if (rte_timer_pending(tim))
		return;

	timinfo->count ++;

	RTE_LOG(INFO, TESTTIMER,
		"%"PRIu64": callback id=%u count=%u on core %u\n",
		cur_time, timinfo->id, timinfo->count, lcore_id);

	/* reload timer 0 on same core */
	if (timinfo->id == 0 && timinfo->count < 20) {
		mytimer_reset(timinfo, hz, SINGLE, lcore_id, timer_basic_cb);
		return;
	}

	/* reload timer 1 on next core */
	if (timinfo->id == 1 && timinfo->count < 10) {
		mytimer_reset(timinfo, hz*2, SINGLE,
			      rte_get_next_lcore(lcore_id, 0, 1),
			      timer_basic_cb);
		return;
	}

	/* Explicitelly stop timer 0. Once stop() called, we can even
	 * erase the content of the structure: it is not referenced
	 * anymore by any code (in case of dynamic structure, it can
	 * be freed) */
	if (timinfo->id == 0 && timinfo->count == 20) {

		/* stop_sync() is not needed, because we know that the
		 * status of timer is only modified by this core */
		rte_timer_stop(tim);
		memset(tim, 0xAA, sizeof(struct rte_timer));
		return;
	}

	/* stop timer3, and restart a new timer0 (it was removed 5
	 * seconds ago) for a single shot */
	if (timinfo->id == 2 && timinfo->count == 25) {
		rte_timer_stop_sync(&mytiminfo[3].tim);

		/* need to reinit because structure was erased with 0xAA */
		rte_timer_init(&mytiminfo[0].tim);
		mytimer_reset(&mytiminfo[0], hz, SINGLE, lcore_id,
			      timer_basic_cb);
	}
}

static int
timer_basic_main_loop(__attribute__((unused)) void *arg)
{
	uint64_t hz = rte_get_timer_hz();
	unsigned lcore_id = rte_lcore_id();
	uint64_t cur_time;
	int64_t diff = 0;

	/* launch all timers on core 0 */
	if (lcore_id == rte_get_master_lcore()) {
		mytimer_reset(&mytiminfo[0], hz/4, SINGLE, lcore_id,
			      timer_basic_cb);
		mytimer_reset(&mytiminfo[1], hz/2, SINGLE, lcore_id,
			      timer_basic_cb);
		mytimer_reset(&mytiminfo[2], hz/4, PERIODICAL, lcore_id,
			      timer_basic_cb);
		mytimer_reset(&mytiminfo[3], hz/4, PERIODICAL,
			      rte_get_next_lcore(lcore_id, 0, 1),
			      timer_basic_cb);
	}

	while (diff >= 0) {

		/* call the timer handler on each core */
		rte_timer_manage();

		/* simulate the processing of a packet
		 * (3 us = 6000 cycles at 2 Ghz) */
		rte_delay_us(3);

		cur_time = rte_get_timer_cycles();
		diff = end_time - cur_time;
	}
	RTE_LOG(INFO, TESTTIMER, "core %u finished\n", lcore_id);

	return 0;
}

static int
timer_sanity_check(void)
{
#ifdef RTE_LIBEAL_USE_HPET
	if (eal_timer_source != EAL_TIMER_HPET) {
		printf("Not using HPET, can't sanity check timer sources\n");
		return 0;
	}

	const uint64_t t_hz = rte_get_tsc_hz();
	const uint64_t h_hz = rte_get_hpet_hz();
	printf("Hertz values: TSC = %"PRIu64", HPET = %"PRIu64"\n", t_hz, h_hz);

	const uint64_t tsc_start = rte_get_tsc_cycles();
	const uint64_t hpet_start = rte_get_hpet_cycles();
	rte_delay_ms(100); /* delay 1/10 second */
	const uint64_t tsc_end = rte_get_tsc_cycles();
	const uint64_t hpet_end = rte_get_hpet_cycles();
	printf("Measured cycles: TSC = %"PRIu64", HPET = %"PRIu64"\n",
			tsc_end-tsc_start, hpet_end-hpet_start);

	const double tsc_time = (double)(tsc_end - tsc_start)/t_hz;
	const double hpet_time = (double)(hpet_end - hpet_start)/h_hz;
	/* get the percentage that the times differ by */
	const double time_diff = fabs(tsc_time - hpet_time)*100/tsc_time;
	printf("Measured time: TSC = %.4f, HPET = %.4f\n", tsc_time, hpet_time);

	printf("Elapsed time measured by TSC and HPET differ by %f%%\n",
			time_diff);
	if (time_diff > 0.1) {
		printf("Error times differ by >0.1%%");
		return -1;
	}
#endif
	return 0;
}

static int
test_timer(void)
{
	unsigned i;
	uint64_t cur_time;
	uint64_t hz;

	/* sanity check our timer sources and timer config values */
	if (timer_sanity_check() < 0) {
		printf("Timer sanity checks failed\n");
		return TEST_FAILED;
	}

	if (rte_lcore_count() < 2) {
		printf("not enough lcores for this test\n");
		return TEST_FAILED;
	}

	/* init timer */
	for (i=0; i<NB_TIMER; i++) {
		memset(&mytiminfo[i], 0, sizeof(struct mytimerinfo));
		mytiminfo[i].id = i;
		rte_timer_init(&mytiminfo[i].tim);
	}

	/* calculate the "end of test" time */
	cur_time = rte_get_timer_cycles();
	hz = rte_get_timer_hz();
	end_time = cur_time + (hz * TEST_DURATION_S);

	/* start other cores */
	printf("Start timer stress tests\n");
	rte_eal_mp_remote_launch(timer_stress_main_loop, NULL, CALL_MASTER);
	rte_eal_mp_wait_lcore();

	/* stop timer 0 used for stress test */
	rte_timer_stop_sync(&mytiminfo[0].tim);

	/* run a second, slightly different set of stress tests */
	printf("\nStart timer stress tests 2\n");
	test_failed = 0;
	rte_eal_mp_remote_launch(timer_stress2_main_loop, NULL, CALL_MASTER);
	rte_eal_mp_wait_lcore();
	if (test_failed)
		return TEST_FAILED;

	/* calculate the "end of test" time */
	cur_time = rte_get_timer_cycles();
	hz = rte_get_timer_hz();
	end_time = cur_time + (hz * TEST_DURATION_S);

	/* start other cores */
	printf("\nStart timer basic tests\n");
	rte_eal_mp_remote_launch(timer_basic_main_loop, NULL, CALL_MASTER);
	rte_eal_mp_wait_lcore();

	/* stop all timers */
	for (i=0; i<NB_TIMER; i++) {
		rte_timer_stop_sync(&mytiminfo[i].tim);
	}

	rte_timer_dump_stats(stdout);

	return TEST_SUCCESS;
}

REGISTER_TEST_COMMAND(timer_autotest, test_timer);