diff options
Diffstat (limited to 'vendor/github.com/google/gopacket/packet.go')
-rw-r--r-- | vendor/github.com/google/gopacket/packet.go | 838 |
1 files changed, 0 insertions, 838 deletions
diff --git a/vendor/github.com/google/gopacket/packet.go b/vendor/github.com/google/gopacket/packet.go deleted file mode 100644 index 76b62d8..0000000 --- a/vendor/github.com/google/gopacket/packet.go +++ /dev/null @@ -1,838 +0,0 @@ -// Copyright 2012 Google, Inc. All rights reserved. -// -// Use of this source code is governed by a BSD-style license -// that can be found in the LICENSE file in the root of the source -// tree. - -package gopacket - -import ( - "bytes" - "encoding/hex" - "errors" - "fmt" - "io" - "os" - "reflect" - "runtime/debug" - "strings" - "time" -) - -// CaptureInfo provides standardized information about a packet captured off -// the wire or read from a file. -type CaptureInfo struct { - // Timestamp is the time the packet was captured, if that is known. - Timestamp time.Time - // CaptureLength is the total number of bytes read off of the wire. - CaptureLength int - // Length is the size of the original packet. Should always be >= - // CaptureLength. - Length int - // InterfaceIndex - InterfaceIndex int -} - -// PacketMetadata contains metadata for a packet. -type PacketMetadata struct { - CaptureInfo - // Truncated is true if packet decoding logic detects that there are fewer - // bytes in the packet than are detailed in various headers (for example, if - // the number of bytes in the IPv4 contents/payload is less than IPv4.Length). - // This is also set automatically for packets captured off the wire if - // CaptureInfo.CaptureLength < CaptureInfo.Length. - Truncated bool -} - -// Packet is the primary object used by gopacket. Packets are created by a -// Decoder's Decode call. A packet is made up of a set of Data, which -// is broken into a number of Layers as it is decoded. -type Packet interface { - //// Functions for outputting the packet as a human-readable string: - //// ------------------------------------------------------------------ - // String returns a human-readable string representation of the packet. - // It uses LayerString on each layer to output the layer. - String() string - // Dump returns a verbose human-readable string representation of the packet, - // including a hex dump of all layers. It uses LayerDump on each layer to - // output the layer. - Dump() string - - //// Functions for accessing arbitrary packet layers: - //// ------------------------------------------------------------------ - // Layers returns all layers in this packet, computing them as necessary - Layers() []Layer - // Layer returns the first layer in this packet of the given type, or nil - Layer(LayerType) Layer - // LayerClass returns the first layer in this packet of the given class, - // or nil. - LayerClass(LayerClass) Layer - - //// Functions for accessing specific types of packet layers. These functions - //// return the first layer of each type found within the packet. - //// ------------------------------------------------------------------ - // LinkLayer returns the first link layer in the packet - LinkLayer() LinkLayer - // NetworkLayer returns the first network layer in the packet - NetworkLayer() NetworkLayer - // TransportLayer returns the first transport layer in the packet - TransportLayer() TransportLayer - // ApplicationLayer returns the first application layer in the packet - ApplicationLayer() ApplicationLayer - // ErrorLayer is particularly useful, since it returns nil if the packet - // was fully decoded successfully, and non-nil if an error was encountered - // in decoding and the packet was only partially decoded. Thus, its output - // can be used to determine if the entire packet was able to be decoded. - ErrorLayer() ErrorLayer - - //// Functions for accessing data specific to the packet: - //// ------------------------------------------------------------------ - // Data returns the set of bytes that make up this entire packet. - Data() []byte - // Metadata returns packet metadata associated with this packet. - Metadata() *PacketMetadata -} - -// packet contains all the information we need to fulfill the Packet interface, -// and its two "subclasses" (yes, no such thing in Go, bear with me), -// eagerPacket and lazyPacket, provide eager and lazy decoding logic around the -// various functions needed to access this information. -type packet struct { - // data contains the entire packet data for a packet - data []byte - // initialLayers is space for an initial set of layers already created inside - // the packet. - initialLayers [6]Layer - // layers contains each layer we've already decoded - layers []Layer - // last is the last layer added to the packet - last Layer - // metadata is the PacketMetadata for this packet - metadata PacketMetadata - - decodeOptions DecodeOptions - - // Pointers to the various important layers - link LinkLayer - network NetworkLayer - transport TransportLayer - application ApplicationLayer - failure ErrorLayer -} - -func (p *packet) SetTruncated() { - p.metadata.Truncated = true -} - -func (p *packet) SetLinkLayer(l LinkLayer) { - if p.link == nil { - p.link = l - } -} - -func (p *packet) SetNetworkLayer(l NetworkLayer) { - if p.network == nil { - p.network = l - } -} - -func (p *packet) SetTransportLayer(l TransportLayer) { - if p.transport == nil { - p.transport = l - } -} - -func (p *packet) SetApplicationLayer(l ApplicationLayer) { - if p.application == nil { - p.application = l - } -} - -func (p *packet) SetErrorLayer(l ErrorLayer) { - if p.failure == nil { - p.failure = l - } -} - -func (p *packet) AddLayer(l Layer) { - p.layers = append(p.layers, l) - p.last = l -} - -func (p *packet) DumpPacketData() { - fmt.Fprint(os.Stderr, p.packetDump()) - os.Stderr.Sync() -} - -func (p *packet) Metadata() *PacketMetadata { - return &p.metadata -} - -func (p *packet) Data() []byte { - return p.data -} - -func (p *packet) DecodeOptions() *DecodeOptions { - return &p.decodeOptions -} - -func (p *packet) addFinalDecodeError(err error, stack []byte) { - fail := &DecodeFailure{err: err, stack: stack} - if p.last == nil { - fail.data = p.data - } else { - fail.data = p.last.LayerPayload() - } - p.AddLayer(fail) - p.SetErrorLayer(fail) -} - -func (p *packet) recoverDecodeError() { - if !p.decodeOptions.SkipDecodeRecovery { - if r := recover(); r != nil { - p.addFinalDecodeError(fmt.Errorf("%v", r), debug.Stack()) - } - } -} - -// LayerString outputs an individual layer as a string. The layer is output -// in a single line, with no trailing newline. This function is specifically -// designed to do the right thing for most layers... it follows the following -// rules: -// * If the Layer has a String function, just output that. -// * Otherwise, output all exported fields in the layer, recursing into -// exported slices and structs. -// NOTE: This is NOT THE SAME AS fmt's "%#v". %#v will output both exported -// and unexported fields... many times packet layers contain unexported stuff -// that would just mess up the output of the layer, see for example the -// Payload layer and it's internal 'data' field, which contains a large byte -// array that would really mess up formatting. -func LayerString(l Layer) string { - return fmt.Sprintf("%v\t%s", l.LayerType(), layerString(reflect.ValueOf(l), false, false)) -} - -// Dumper dumps verbose information on a value. If a layer type implements -// Dumper, then its LayerDump() string will include the results in its output. -type Dumper interface { - Dump() string -} - -// LayerDump outputs a very verbose string representation of a layer. Its -// output is a concatenation of LayerString(l) and hex.Dump(l.LayerContents()). -// It contains newlines and ends with a newline. -func LayerDump(l Layer) string { - var b bytes.Buffer - b.WriteString(LayerString(l)) - b.WriteByte('\n') - if d, ok := l.(Dumper); ok { - dump := d.Dump() - if dump != "" { - b.WriteString(dump) - if dump[len(dump)-1] != '\n' { - b.WriteByte('\n') - } - } - } - b.WriteString(hex.Dump(l.LayerContents())) - return b.String() -} - -// layerString outputs, recursively, a layer in a "smart" way. See docs for -// LayerString for more details. -// -// Params: -// i - value to write out -// anonymous: if we're currently recursing an anonymous member of a struct -// writeSpace: if we've already written a value in a struct, and need to -// write a space before writing more. This happens when we write various -// anonymous values, and need to keep writing more. -func layerString(v reflect.Value, anonymous bool, writeSpace bool) string { - // Let String() functions take precedence. - if v.CanInterface() { - if s, ok := v.Interface().(fmt.Stringer); ok { - return s.String() - } - } - // Reflect, and spit out all the exported fields as key=value. - switch v.Type().Kind() { - case reflect.Interface, reflect.Ptr: - if v.IsNil() { - return "nil" - } - r := v.Elem() - return layerString(r, anonymous, writeSpace) - case reflect.Struct: - var b bytes.Buffer - typ := v.Type() - if !anonymous { - b.WriteByte('{') - } - for i := 0; i < v.NumField(); i++ { - // Check if this is upper-case. - ftype := typ.Field(i) - f := v.Field(i) - if ftype.Anonymous { - anonStr := layerString(f, true, writeSpace) - writeSpace = writeSpace || anonStr != "" - b.WriteString(anonStr) - } else if ftype.PkgPath == "" { // exported - if writeSpace { - b.WriteByte(' ') - } - writeSpace = true - fmt.Fprintf(&b, "%s=%s", typ.Field(i).Name, layerString(f, false, writeSpace)) - } - } - if !anonymous { - b.WriteByte('}') - } - return b.String() - case reflect.Slice: - var b bytes.Buffer - b.WriteByte('[') - if v.Len() > 4 { - fmt.Fprintf(&b, "..%d..", v.Len()) - } else { - for j := 0; j < v.Len(); j++ { - if j != 0 { - b.WriteString(", ") - } - b.WriteString(layerString(v.Index(j), false, false)) - } - } - b.WriteByte(']') - return b.String() - } - return fmt.Sprintf("%v", v.Interface()) -} - -const ( - longBytesLength = 128 -) - -// LongBytesGoString returns a string representation of the byte slice shortened -// using the format '<type>{<truncated slice> ... (<n> bytes)}' if it -// exceeds a predetermined length. Can be used to avoid filling the display with -// very long byte strings. -func LongBytesGoString(buf []byte) string { - if len(buf) < longBytesLength { - return fmt.Sprintf("%#v", buf) - } - s := fmt.Sprintf("%#v", buf[:longBytesLength-1]) - s = strings.TrimSuffix(s, "}") - return fmt.Sprintf("%s ... (%d bytes)}", s, len(buf)) -} - -func baseLayerString(value reflect.Value) string { - t := value.Type() - content := value.Field(0) - c := make([]byte, content.Len()) - for i := range c { - c[i] = byte(content.Index(i).Uint()) - } - payload := value.Field(1) - p := make([]byte, payload.Len()) - for i := range p { - p[i] = byte(payload.Index(i).Uint()) - } - return fmt.Sprintf("%s{Contents:%s, Payload:%s}", t.String(), - LongBytesGoString(c), - LongBytesGoString(p)) -} - -func layerGoString(i interface{}, b *bytes.Buffer) { - if s, ok := i.(fmt.GoStringer); ok { - b.WriteString(s.GoString()) - return - } - - var v reflect.Value - var ok bool - if v, ok = i.(reflect.Value); !ok { - v = reflect.ValueOf(i) - } - switch v.Kind() { - case reflect.Ptr, reflect.Interface: - if v.Kind() == reflect.Ptr { - b.WriteByte('&') - } - layerGoString(v.Elem().Interface(), b) - case reflect.Struct: - t := v.Type() - b.WriteString(t.String()) - b.WriteByte('{') - for i := 0; i < v.NumField(); i++ { - if i > 0 { - b.WriteString(", ") - } - if t.Field(i).Name == "BaseLayer" { - fmt.Fprintf(b, "BaseLayer:%s", baseLayerString(v.Field(i))) - } else if v.Field(i).Kind() == reflect.Struct { - fmt.Fprintf(b, "%s:", t.Field(i).Name) - layerGoString(v.Field(i), b) - } else if v.Field(i).Kind() == reflect.Ptr { - b.WriteByte('&') - layerGoString(v.Field(i), b) - } else { - fmt.Fprintf(b, "%s:%#v", t.Field(i).Name, v.Field(i)) - } - } - b.WriteByte('}') - default: - fmt.Fprintf(b, "%#v", i) - } -} - -// LayerGoString returns a representation of the layer in Go syntax, -// taking care to shorten "very long" BaseLayer byte slices -func LayerGoString(l Layer) string { - b := new(bytes.Buffer) - layerGoString(l, b) - return b.String() -} - -func (p *packet) packetString() string { - var b bytes.Buffer - fmt.Fprintf(&b, "PACKET: %d bytes", len(p.Data())) - if p.metadata.Truncated { - b.WriteString(", truncated") - } - if p.metadata.Length > 0 { - fmt.Fprintf(&b, ", wire length %d cap length %d", p.metadata.Length, p.metadata.CaptureLength) - } - if !p.metadata.Timestamp.IsZero() { - fmt.Fprintf(&b, " @ %v", p.metadata.Timestamp) - } - b.WriteByte('\n') - for i, l := range p.layers { - fmt.Fprintf(&b, "- Layer %d (%02d bytes) = %s\n", i+1, len(l.LayerContents()), LayerString(l)) - } - return b.String() -} - -func (p *packet) packetDump() string { - var b bytes.Buffer - fmt.Fprintf(&b, "-- FULL PACKET DATA (%d bytes) ------------------------------------\n%s", len(p.data), hex.Dump(p.data)) - for i, l := range p.layers { - fmt.Fprintf(&b, "--- Layer %d ---\n%s", i+1, LayerDump(l)) - } - return b.String() -} - -// eagerPacket is a packet implementation that does eager decoding. Upon -// initial construction, it decodes all the layers it can from packet data. -// eagerPacket implements Packet and PacketBuilder. -type eagerPacket struct { - packet -} - -var errNilDecoder = errors.New("NextDecoder passed nil decoder, probably an unsupported decode type") - -func (p *eagerPacket) NextDecoder(next Decoder) error { - if next == nil { - return errNilDecoder - } - if p.last == nil { - return errors.New("NextDecoder called, but no layers added yet") - } - d := p.last.LayerPayload() - if len(d) == 0 { - return nil - } - // Since we're eager, immediately call the next decoder. - return next.Decode(d, p) -} -func (p *eagerPacket) initialDecode(dec Decoder) { - defer p.recoverDecodeError() - err := dec.Decode(p.data, p) - if err != nil { - p.addFinalDecodeError(err, nil) - } -} -func (p *eagerPacket) LinkLayer() LinkLayer { - return p.link -} -func (p *eagerPacket) NetworkLayer() NetworkLayer { - return p.network -} -func (p *eagerPacket) TransportLayer() TransportLayer { - return p.transport -} -func (p *eagerPacket) ApplicationLayer() ApplicationLayer { - return p.application -} -func (p *eagerPacket) ErrorLayer() ErrorLayer { - return p.failure -} -func (p *eagerPacket) Layers() []Layer { - return p.layers -} -func (p *eagerPacket) Layer(t LayerType) Layer { - for _, l := range p.layers { - if l.LayerType() == t { - return l - } - } - return nil -} -func (p *eagerPacket) LayerClass(lc LayerClass) Layer { - for _, l := range p.layers { - if lc.Contains(l.LayerType()) { - return l - } - } - return nil -} -func (p *eagerPacket) String() string { return p.packetString() } -func (p *eagerPacket) Dump() string { return p.packetDump() } - -// lazyPacket does lazy decoding on its packet data. On construction it does -// no initial decoding. For each function call, it decodes only as many layers -// as are necessary to compute the return value for that function. -// lazyPacket implements Packet and PacketBuilder. -type lazyPacket struct { - packet - next Decoder -} - -func (p *lazyPacket) NextDecoder(next Decoder) error { - if next == nil { - return errNilDecoder - } - p.next = next - return nil -} -func (p *lazyPacket) decodeNextLayer() { - if p.next == nil { - return - } - d := p.data - if p.last != nil { - d = p.last.LayerPayload() - } - next := p.next - p.next = nil - // We've just set p.next to nil, so if we see we have no data, this should be - // the final call we get to decodeNextLayer if we return here. - if len(d) == 0 { - return - } - defer p.recoverDecodeError() - err := next.Decode(d, p) - if err != nil { - p.addFinalDecodeError(err, nil) - } -} -func (p *lazyPacket) LinkLayer() LinkLayer { - for p.link == nil && p.next != nil { - p.decodeNextLayer() - } - return p.link -} -func (p *lazyPacket) NetworkLayer() NetworkLayer { - for p.network == nil && p.next != nil { - p.decodeNextLayer() - } - return p.network -} -func (p *lazyPacket) TransportLayer() TransportLayer { - for p.transport == nil && p.next != nil { - p.decodeNextLayer() - } - return p.transport -} -func (p *lazyPacket) ApplicationLayer() ApplicationLayer { - for p.application == nil && p.next != nil { - p.decodeNextLayer() - } - return p.application -} -func (p *lazyPacket) ErrorLayer() ErrorLayer { - for p.failure == nil && p.next != nil { - p.decodeNextLayer() - } - return p.failure -} -func (p *lazyPacket) Layers() []Layer { - for p.next != nil { - p.decodeNextLayer() - } - return p.layers -} -func (p *lazyPacket) Layer(t LayerType) Layer { - for _, l := range p.layers { - if l.LayerType() == t { - return l - } - } - numLayers := len(p.layers) - for p.next != nil { - p.decodeNextLayer() - for _, l := range p.layers[numLayers:] { - if l.LayerType() == t { - return l - } - } - numLayers = len(p.layers) - } - return nil -} -func (p *lazyPacket) LayerClass(lc LayerClass) Layer { - for _, l := range p.layers { - if lc.Contains(l.LayerType()) { - return l - } - } - numLayers := len(p.layers) - for p.next != nil { - p.decodeNextLayer() - for _, l := range p.layers[numLayers:] { - if lc.Contains(l.LayerType()) { - return l - } - } - numLayers = len(p.layers) - } - return nil -} -func (p *lazyPacket) String() string { p.Layers(); return p.packetString() } -func (p *lazyPacket) Dump() string { p.Layers(); return p.packetDump() } - -// DecodeOptions tells gopacket how to decode a packet. -type DecodeOptions struct { - // Lazy decoding decodes the minimum number of layers needed to return data - // for a packet at each function call. Be careful using this with concurrent - // packet processors, as each call to packet.* could mutate the packet, and - // two concurrent function calls could interact poorly. - Lazy bool - // NoCopy decoding doesn't copy its input buffer into storage that's owned by - // the packet. If you can guarantee that the bytes underlying the slice - // passed into NewPacket aren't going to be modified, this can be faster. If - // there's any chance that those bytes WILL be changed, this will invalidate - // your packets. - NoCopy bool - // SkipDecodeRecovery skips over panic recovery during packet decoding. - // Normally, when packets decode, if a panic occurs, that panic is captured - // by a recover(), and a DecodeFailure layer is added to the packet detailing - // the issue. If this flag is set, panics are instead allowed to continue up - // the stack. - SkipDecodeRecovery bool - // DecodeStreamsAsDatagrams enables routing of application-level layers in the TCP - // decoder. If true, we should try to decode layers after TCP in single packets. - // This is disabled by default because the reassembly package drives the decoding - // of TCP payload data after reassembly. - DecodeStreamsAsDatagrams bool -} - -// Default decoding provides the safest (but slowest) method for decoding -// packets. It eagerly processes all layers (so it's concurrency-safe) and it -// copies its input buffer upon creation of the packet (so the packet remains -// valid if the underlying slice is modified. Both of these take time, -// though, so beware. If you can guarantee that the packet will only be used -// by one goroutine at a time, set Lazy decoding. If you can guarantee that -// the underlying slice won't change, set NoCopy decoding. -var Default = DecodeOptions{} - -// Lazy is a DecodeOptions with just Lazy set. -var Lazy = DecodeOptions{Lazy: true} - -// NoCopy is a DecodeOptions with just NoCopy set. -var NoCopy = DecodeOptions{NoCopy: true} - -// DecodeStreamsAsDatagrams is a DecodeOptions with just DecodeStreamsAsDatagrams set. -var DecodeStreamsAsDatagrams = DecodeOptions{DecodeStreamsAsDatagrams: true} - -// NewPacket creates a new Packet object from a set of bytes. The -// firstLayerDecoder tells it how to interpret the first layer from the bytes, -// future layers will be generated from that first layer automatically. -func NewPacket(data []byte, firstLayerDecoder Decoder, options DecodeOptions) Packet { - if !options.NoCopy { - dataCopy := make([]byte, len(data)) - copy(dataCopy, data) - data = dataCopy - } - if options.Lazy { - p := &lazyPacket{ - packet: packet{data: data, decodeOptions: options}, - next: firstLayerDecoder, - } - p.layers = p.initialLayers[:0] - // Crazy craziness: - // If the following return statemet is REMOVED, and Lazy is FALSE, then - // eager packet processing becomes 17% FASTER. No, there is no logical - // explanation for this. However, it's such a hacky micro-optimization that - // we really can't rely on it. It appears to have to do with the size the - // compiler guesses for this function's stack space, since one symptom is - // that with the return statement in place, we more than double calls to - // runtime.morestack/runtime.lessstack. We'll hope the compiler gets better - // over time and we get this optimization for free. Until then, we'll have - // to live with slower packet processing. - return p - } - p := &eagerPacket{ - packet: packet{data: data, decodeOptions: options}, - } - p.layers = p.initialLayers[:0] - p.initialDecode(firstLayerDecoder) - return p -} - -// PacketDataSource is an interface for some source of packet data. Users may -// create their own implementations, or use the existing implementations in -// gopacket/pcap (libpcap, allows reading from live interfaces or from -// pcap files) or gopacket/pfring (PF_RING, allows reading from live -// interfaces). -type PacketDataSource interface { - // ReadPacketData returns the next packet available from this data source. - // It returns: - // data: The bytes of an individual packet. - // ci: Metadata about the capture - // err: An error encountered while reading packet data. If err != nil, - // then data/ci will be ignored. - ReadPacketData() (data []byte, ci CaptureInfo, err error) -} - -// ConcatFinitePacketDataSources returns a PacketDataSource that wraps a set -// of internal PacketDataSources, each of which will stop with io.EOF after -// reading a finite number of packets. The returned PacketDataSource will -// return all packets from the first finite source, followed by all packets from -// the second, etc. Once all finite sources have returned io.EOF, the returned -// source will as well. -func ConcatFinitePacketDataSources(pds ...PacketDataSource) PacketDataSource { - c := concat(pds) - return &c -} - -type concat []PacketDataSource - -func (c *concat) ReadPacketData() (data []byte, ci CaptureInfo, err error) { - for len(*c) > 0 { - data, ci, err = (*c)[0].ReadPacketData() - if err == io.EOF { - *c = (*c)[1:] - continue - } - return - } - return nil, CaptureInfo{}, io.EOF -} - -// ZeroCopyPacketDataSource is an interface to pull packet data from sources -// that allow data to be returned without copying to a user-controlled buffer. -// It's very similar to PacketDataSource, except that the caller must be more -// careful in how the returned buffer is handled. -type ZeroCopyPacketDataSource interface { - // ZeroCopyReadPacketData returns the next packet available from this data source. - // It returns: - // data: The bytes of an individual packet. Unlike with - // PacketDataSource's ReadPacketData, the slice returned here points - // to a buffer owned by the data source. In particular, the bytes in - // this buffer may be changed by future calls to - // ZeroCopyReadPacketData. Do not use the returned buffer after - // subsequent ZeroCopyReadPacketData calls. - // ci: Metadata about the capture - // err: An error encountered while reading packet data. If err != nil, - // then data/ci will be ignored. - ZeroCopyReadPacketData() (data []byte, ci CaptureInfo, err error) -} - -// PacketSource reads in packets from a PacketDataSource, decodes them, and -// returns them. -// -// There are currently two different methods for reading packets in through -// a PacketSource: -// -// Reading With Packets Function -// -// This method is the most convenient and easiest to code, but lacks -// flexibility. Packets returns a 'chan Packet', then asynchronously writes -// packets into that channel. Packets uses a blocking channel, and closes -// it if an io.EOF is returned by the underlying PacketDataSource. All other -// PacketDataSource errors are ignored and discarded. -// for packet := range packetSource.Packets() { -// ... -// } -// -// Reading With NextPacket Function -// -// This method is the most flexible, and exposes errors that may be -// encountered by the underlying PacketDataSource. It's also the fastest -// in a tight loop, since it doesn't have the overhead of a channel -// read/write. However, it requires the user to handle errors, most -// importantly the io.EOF error in cases where packets are being read from -// a file. -// for { -// packet, err := packetSource.NextPacket() -// if err == io.EOF { -// break -// } else if err != nil { -// log.Println("Error:", err) -// continue -// } -// handlePacket(packet) // Do something with each packet. -// } -type PacketSource struct { - source PacketDataSource - decoder Decoder - // DecodeOptions is the set of options to use for decoding each piece - // of packet data. This can/should be changed by the user to reflect the - // way packets should be decoded. - DecodeOptions - c chan Packet -} - -// NewPacketSource creates a packet data source. -func NewPacketSource(source PacketDataSource, decoder Decoder) *PacketSource { - return &PacketSource{ - source: source, - decoder: decoder, - } -} - -// NextPacket returns the next decoded packet from the PacketSource. On error, -// it returns a nil packet and a non-nil error. -func (p *PacketSource) NextPacket() (Packet, error) { - data, ci, err := p.source.ReadPacketData() - if err != nil { - return nil, err - } - packet := NewPacket(data, p.decoder, p.DecodeOptions) - m := packet.Metadata() - m.CaptureInfo = ci - m.Truncated = m.Truncated || ci.CaptureLength < ci.Length - return packet, nil -} - -// packetsToChannel reads in all packets from the packet source and sends them -// to the given channel. When it receives an error, it ignores it. When it -// receives an io.EOF, it closes the channel. -func (p *PacketSource) packetsToChannel() { - defer close(p.c) - for { - packet, err := p.NextPacket() - if err == io.EOF { - return - } else if err == nil { - p.c <- packet - } - } -} - -// Packets returns a channel of packets, allowing easy iterating over -// packets. Packets will be asynchronously read in from the underlying -// PacketDataSource and written to the returned channel. If the underlying -// PacketDataSource returns an io.EOF error, the channel will be closed. -// If any other error is encountered, it is ignored. -// -// for packet := range packetSource.Packets() { -// handlePacket(packet) // Do something with each packet. -// } -// -// If called more than once, returns the same channel. -func (p *PacketSource) Packets() chan Packet { - if p.c == nil { - p.c = make(chan Packet, 1000) - go p.packetsToChannel() - } - return p.c -} |