1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
|
// raw-data is a basic example showing how to create a memif interface, handle
// events through callbacks and perform Rx/Tx of raw data. Before handling
// an actual packets it is important to understand the skeleton of libmemif-based
// applications.
//
// Since VPP expects proper packet data, it is not very useful to connect
// raw-data example with VPP, even though it will work, since all the received
// data will get dropped on the VPP side.
//
// To create a connection of two raw-data instances, run two processes
// concurrently:
// - master memif:
// $ ./raw-data
// - slave memif:
// $ ./raw-data --slave
//
// Every 3 seconds both sides send 3 raw-data packets to the opposite end through
// each queue. The received packets are printed to stdout.
//
// Stop an instance of raw-data with an interrupt signal.
package main
import (
"fmt"
"os"
"os/signal"
"strconv"
"sync"
"time"
"git.fd.io/govpp.git/extras/libmemif"
)
const (
// Socket through which the opposite memifs will establish the connection.
Socket = "/tmp/raw-data-example"
// Secret used to authenticate the memif connection.
Secret = "secret"
// ConnectionID is an identifier used to match opposite memifs.
ConnectionID = 1
// NumQueues is the (configured!) number of queues for both Rx & Tx.
// The actual number agreed during connection establishment may be smaller!
NumQueues uint8 = 3
)
// For management of go routines.
var wg sync.WaitGroup
var stopCh chan struct{}
// OnConnect is called when a memif connection gets established.
func OnConnect(memif *libmemif.Memif) (err error) {
details, err := memif.GetDetails()
if err != nil {
fmt.Printf("libmemif.GetDetails() error: %v\n", err)
}
fmt.Printf("memif %s has been connected: %+v\n", memif.IfName, details)
stopCh = make(chan struct{})
// Start a separate go routine for each queue.
// (memif queue is a unit of parallelism for Rx/Tx)
// Beware: the number of queues created may be lower than what was requested
// in MemifConfiguration (the master makes the final decision).
// Use Memif.GetDetails to get the number of queues.
var i uint8
for i = 0; i < uint8(len(details.RxQueues)); i++ {
wg.Add(1)
go ReadAndPrintPackets(memif, i)
}
for i = 0; i < uint8(len(details.TxQueues)); i++ {
wg.Add(1)
go SendPackets(memif, i)
}
return nil
}
// OnDisconnect is called when a memif connection is lost.
func OnDisconnect(memif *libmemif.Memif) (err error) {
fmt.Printf("memif %s has been disconnected\n", memif.IfName)
// Stop all packet producers and consumers.
close(stopCh)
wg.Wait()
return nil
}
// ReadAndPrintPackets keeps receiving raw packet data from a selected queue
// and prints them to stdout.
func ReadAndPrintPackets(memif *libmemif.Memif, queueID uint8) {
defer wg.Done()
// Get channel which fires every time there are packets to read on the queue.
interruptCh, err := memif.GetQueueInterruptChan(queueID)
if err != nil {
// Example of libmemif error handling code:
switch err {
case libmemif.ErrQueueID:
fmt.Printf("libmemif.Memif.GetQueueInterruptChan() complains about invalid queue id!?")
// Here you would put all the errors that need to be handled individually...
default:
fmt.Printf("libmemif.Memif.GetQueueInterruptChan() error: %v\n", err)
}
return
}
for {
select {
case <-interruptCh:
// Read all packets from the queue but at most 10 at once.
// Since there is only one interrupt signal sent for an entire burst
// of packets, an interrupt handling routine should repeatedly call
// RxBurst() until the function returns an empty slice of packets.
// This way it is ensured that there are no packets left
// on the queue unread when the interrupt signal is cleared.
for {
packets, err := memif.RxBurst(queueID, 10)
if err != nil {
fmt.Printf("libmemif.Memif.RxBurst() error: %v\n", err)
// Skip this burst, continue with the next one 3secs later...
} else {
if len(packets) == 0 {
// No more packets to read until the next interrupt.
break
}
for _, packet := range packets {
fmt.Printf("Received packet queue=%d: %v\n", queueID, string(packet[:]))
}
}
}
case <-stopCh:
return
}
}
}
// SendPackets keeps sending bursts of 3 raw-data packets every 3 seconds into
// the selected queue.
func SendPackets(memif *libmemif.Memif, queueID uint8) {
defer wg.Done()
counter := 0
for {
select {
case <-time.After(3 * time.Second):
counter++
// Prepare fake packets.
packets := []libmemif.RawPacketData{
libmemif.RawPacketData("Packet #1 in burst number " + strconv.Itoa(counter)),
libmemif.RawPacketData("Packet #2 in burst number " + strconv.Itoa(counter)),
libmemif.RawPacketData("Packet #3 in burst number " + strconv.Itoa(counter)),
}
// Send the packets. We may not be able to do it in one burst if the ring
// is (almost) full or the internal buffer cannot contain it.
sent := 0
for {
count, err := memif.TxBurst(queueID, packets[sent:])
if err != nil {
fmt.Printf("libmemif.Memif.TxBurst() error: %v\n", err)
break
} else {
fmt.Printf("libmemif.Memif.TxBurst() has sent %d packets.\n", count)
sent += int(count)
if sent == len(packets) {
break
}
}
}
case <-stopCh:
return
}
}
}
func main() {
fmt.Println("Starting 'raw-data' example...")
// If run with the "--slave" option, create memif in the slave mode.
var isMaster = true
var appSuffix string
if len(os.Args) > 1 && (os.Args[1] == "--slave" || os.Args[1] == "-slave") {
isMaster = false
appSuffix = "-slave"
}
// Initialize libmemif first.
appName := "Raw-Data" + appSuffix
fmt.Println("Initializing libmemif as ", appName)
err := libmemif.Init(appName)
if err != nil {
fmt.Printf("libmemif.Init() error: %v\n", err)
return
}
// Schedule automatic cleanup.
defer libmemif.Cleanup()
// Prepare callbacks to use with the memif.
// The same callbacks could be used with multiple memifs.
// The first input argument (*libmemif.Memif) can be used to tell which
// memif the callback was triggered for.
memifCallbacks := &libmemif.MemifCallbacks{
OnConnect: OnConnect,
OnDisconnect: OnDisconnect,
}
// Prepare memif1 configuration.
memifConfig := &libmemif.MemifConfig{
MemifMeta: libmemif.MemifMeta{
IfName: "memif1",
ConnID: ConnectionID,
SocketFilename: Socket,
Secret: Secret,
IsMaster: isMaster,
Mode: libmemif.IfModeEthernet,
},
MemifShmSpecs: libmemif.MemifShmSpecs{
NumRxQueues: NumQueues,
NumTxQueues: NumQueues,
BufferSize: 2048,
Log2RingSize: 10,
},
}
fmt.Printf("Callbacks: %+v\n", memifCallbacks)
fmt.Printf("Config: %+v\n", memifConfig)
// Create memif1 interface.
memif, err := libmemif.CreateInterface(memifConfig, memifCallbacks)
if err != nil {
fmt.Printf("libmemif.CreateInterface() error: %v\n", err)
return
}
// Schedule automatic cleanup of the interface.
defer memif.Close()
// Wait until an interrupt signal is received.
sigChan := make(chan os.Signal, 1)
signal.Notify(sigChan, os.Interrupt)
<-sigChan
}
|