summaryrefslogtreecommitdiffstats
path: root/src/dpdk/lib/librte_hash/rte_cuckoo_hash.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/dpdk/lib/librte_hash/rte_cuckoo_hash.c')
-rw-r--r--src/dpdk/lib/librte_hash/rte_cuckoo_hash.c1247
1 files changed, 1247 insertions, 0 deletions
diff --git a/src/dpdk/lib/librte_hash/rte_cuckoo_hash.c b/src/dpdk/lib/librte_hash/rte_cuckoo_hash.c
new file mode 100644
index 00000000..26e54f68
--- /dev/null
+++ b/src/dpdk/lib/librte_hash/rte_cuckoo_hash.c
@@ -0,0 +1,1247 @@
+/*-
+ * BSD LICENSE
+ *
+ * Copyright(c) 2010-2016 Intel Corporation. All rights reserved.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ * * Neither the name of Intel Corporation nor the names of its
+ * contributors may be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include <string.h>
+#include <stdint.h>
+#include <errno.h>
+#include <stdio.h>
+#include <stdarg.h>
+#include <sys/queue.h>
+
+#include <rte_common.h>
+#include <rte_memory.h> /* for definition of RTE_CACHE_LINE_SIZE */
+#include <rte_log.h>
+#include <rte_memcpy.h>
+#include <rte_prefetch.h>
+#include <rte_branch_prediction.h>
+#include <rte_memzone.h>
+#include <rte_malloc.h>
+#include <rte_eal.h>
+#include <rte_eal_memconfig.h>
+#include <rte_per_lcore.h>
+#include <rte_errno.h>
+#include <rte_string_fns.h>
+#include <rte_cpuflags.h>
+#include <rte_log.h>
+#include <rte_rwlock.h>
+#include <rte_spinlock.h>
+#include <rte_ring.h>
+#include <rte_compat.h>
+
+#include "rte_hash.h"
+#include "rte_cuckoo_hash.h"
+
+#if defined(RTE_ARCH_X86)
+#include "rte_cuckoo_hash_x86.h"
+#endif
+
+TAILQ_HEAD(rte_hash_list, rte_tailq_entry);
+
+static struct rte_tailq_elem rte_hash_tailq = {
+ .name = "RTE_HASH",
+};
+EAL_REGISTER_TAILQ(rte_hash_tailq)
+
+struct rte_hash *
+rte_hash_find_existing(const char *name)
+{
+ struct rte_hash *h = NULL;
+ struct rte_tailq_entry *te;
+ struct rte_hash_list *hash_list;
+
+ hash_list = RTE_TAILQ_CAST(rte_hash_tailq.head, rte_hash_list);
+
+ rte_rwlock_read_lock(RTE_EAL_TAILQ_RWLOCK);
+ TAILQ_FOREACH(te, hash_list, next) {
+ h = (struct rte_hash *) te->data;
+ if (strncmp(name, h->name, RTE_HASH_NAMESIZE) == 0)
+ break;
+ }
+ rte_rwlock_read_unlock(RTE_EAL_TAILQ_RWLOCK);
+
+ if (te == NULL) {
+ rte_errno = ENOENT;
+ return NULL;
+ }
+ return h;
+}
+
+void rte_hash_set_cmp_func(struct rte_hash *h, rte_hash_cmp_eq_t func)
+{
+ h->rte_hash_custom_cmp_eq = func;
+}
+
+static inline int
+rte_hash_cmp_eq(const void *key1, const void *key2, const struct rte_hash *h)
+{
+ if (h->cmp_jump_table_idx == KEY_CUSTOM)
+ return h->rte_hash_custom_cmp_eq(key1, key2, h->key_len);
+ else
+ return cmp_jump_table[h->cmp_jump_table_idx](key1, key2, h->key_len);
+}
+
+struct rte_hash *
+rte_hash_create(const struct rte_hash_parameters *params)
+{
+ struct rte_hash *h = NULL;
+ struct rte_tailq_entry *te = NULL;
+ struct rte_hash_list *hash_list;
+ struct rte_ring *r = NULL;
+ char hash_name[RTE_HASH_NAMESIZE];
+ void *k = NULL;
+ void *buckets = NULL;
+ char ring_name[RTE_RING_NAMESIZE];
+ unsigned num_key_slots;
+ unsigned hw_trans_mem_support = 0;
+ unsigned i;
+
+ hash_list = RTE_TAILQ_CAST(rte_hash_tailq.head, rte_hash_list);
+
+ if (params == NULL) {
+ RTE_LOG(ERR, HASH, "rte_hash_create has no parameters\n");
+ return NULL;
+ }
+
+ /* Check for valid parameters */
+ if ((params->entries > RTE_HASH_ENTRIES_MAX) ||
+ (params->entries < RTE_HASH_BUCKET_ENTRIES) ||
+ !rte_is_power_of_2(RTE_HASH_BUCKET_ENTRIES) ||
+ (params->key_len == 0)) {
+ rte_errno = EINVAL;
+ RTE_LOG(ERR, HASH, "rte_hash_create has invalid parameters\n");
+ return NULL;
+ }
+
+ /* Check extra flags field to check extra options. */
+ if (params->extra_flag & RTE_HASH_EXTRA_FLAGS_TRANS_MEM_SUPPORT)
+ hw_trans_mem_support = 1;
+
+ /* Store all keys and leave the first entry as a dummy entry for lookup_bulk */
+ if (hw_trans_mem_support)
+ /*
+ * Increase number of slots by total number of indices
+ * that can be stored in the lcore caches
+ * except for the first cache
+ */
+ num_key_slots = params->entries + (RTE_MAX_LCORE - 1) *
+ LCORE_CACHE_SIZE + 1;
+ else
+ num_key_slots = params->entries + 1;
+
+ snprintf(ring_name, sizeof(ring_name), "HT_%s", params->name);
+ r = rte_ring_create(ring_name, rte_align32pow2(num_key_slots),
+ params->socket_id, 0);
+ if (r == NULL) {
+ RTE_LOG(ERR, HASH, "memory allocation failed\n");
+ goto err;
+ }
+
+ snprintf(hash_name, sizeof(hash_name), "HT_%s", params->name);
+
+ rte_rwlock_write_lock(RTE_EAL_TAILQ_RWLOCK);
+
+ /* guarantee there's no existing: this is normally already checked
+ * by ring creation above */
+ TAILQ_FOREACH(te, hash_list, next) {
+ h = (struct rte_hash *) te->data;
+ if (strncmp(params->name, h->name, RTE_HASH_NAMESIZE) == 0)
+ break;
+ }
+ h = NULL;
+ if (te != NULL) {
+ rte_errno = EEXIST;
+ te = NULL;
+ goto err_unlock;
+ }
+
+ te = rte_zmalloc("HASH_TAILQ_ENTRY", sizeof(*te), 0);
+ if (te == NULL) {
+ RTE_LOG(ERR, HASH, "tailq entry allocation failed\n");
+ goto err_unlock;
+ }
+
+ h = (struct rte_hash *)rte_zmalloc_socket(hash_name, sizeof(struct rte_hash),
+ RTE_CACHE_LINE_SIZE, params->socket_id);
+
+ if (h == NULL) {
+ RTE_LOG(ERR, HASH, "memory allocation failed\n");
+ goto err_unlock;
+ }
+
+ const uint32_t num_buckets = rte_align32pow2(params->entries)
+ / RTE_HASH_BUCKET_ENTRIES;
+
+ buckets = rte_zmalloc_socket(NULL,
+ num_buckets * sizeof(struct rte_hash_bucket),
+ RTE_CACHE_LINE_SIZE, params->socket_id);
+
+ if (buckets == NULL) {
+ RTE_LOG(ERR, HASH, "memory allocation failed\n");
+ goto err_unlock;
+ }
+
+ const uint32_t key_entry_size = sizeof(struct rte_hash_key) + params->key_len;
+ const uint64_t key_tbl_size = (uint64_t) key_entry_size * num_key_slots;
+
+ k = rte_zmalloc_socket(NULL, key_tbl_size,
+ RTE_CACHE_LINE_SIZE, params->socket_id);
+
+ if (k == NULL) {
+ RTE_LOG(ERR, HASH, "memory allocation failed\n");
+ goto err_unlock;
+ }
+
+/*
+ * If x86 architecture is used, select appropriate compare function,
+ * which may use x86 intrinsics, otherwise use memcmp
+ */
+#if defined(RTE_ARCH_X86) || defined(RTE_ARCH_ARM64)
+ /* Select function to compare keys */
+ switch (params->key_len) {
+ case 16:
+ h->cmp_jump_table_idx = KEY_16_BYTES;
+ break;
+ case 32:
+ h->cmp_jump_table_idx = KEY_32_BYTES;
+ break;
+ case 48:
+ h->cmp_jump_table_idx = KEY_48_BYTES;
+ break;
+ case 64:
+ h->cmp_jump_table_idx = KEY_64_BYTES;
+ break;
+ case 80:
+ h->cmp_jump_table_idx = KEY_80_BYTES;
+ break;
+ case 96:
+ h->cmp_jump_table_idx = KEY_96_BYTES;
+ break;
+ case 112:
+ h->cmp_jump_table_idx = KEY_112_BYTES;
+ break;
+ case 128:
+ h->cmp_jump_table_idx = KEY_128_BYTES;
+ break;
+ default:
+ /* If key is not multiple of 16, use generic memcmp */
+ h->cmp_jump_table_idx = KEY_OTHER_BYTES;
+ }
+#else
+ h->cmp_jump_table_idx = KEY_OTHER_BYTES;
+#endif
+
+ if (hw_trans_mem_support) {
+ h->local_free_slots = rte_zmalloc_socket(NULL,
+ sizeof(struct lcore_cache) * RTE_MAX_LCORE,
+ RTE_CACHE_LINE_SIZE, params->socket_id);
+ }
+
+ /* Setup hash context */
+ snprintf(h->name, sizeof(h->name), "%s", params->name);
+ h->entries = params->entries;
+ h->key_len = params->key_len;
+ h->key_entry_size = key_entry_size;
+ h->hash_func_init_val = params->hash_func_init_val;
+
+ h->num_buckets = num_buckets;
+ h->bucket_bitmask = h->num_buckets - 1;
+ h->buckets = buckets;
+ h->hash_func = (params->hash_func == NULL) ?
+ DEFAULT_HASH_FUNC : params->hash_func;
+ h->key_store = k;
+ h->free_slots = r;
+ h->hw_trans_mem_support = hw_trans_mem_support;
+
+ /* Turn on multi-writer only with explicit flat from user and TM
+ * support.
+ */
+ if (params->extra_flag & RTE_HASH_EXTRA_FLAGS_MULTI_WRITER_ADD) {
+ if (h->hw_trans_mem_support) {
+ h->add_key = ADD_KEY_MULTIWRITER_TM;
+ } else {
+ h->add_key = ADD_KEY_MULTIWRITER;
+ h->multiwriter_lock = rte_malloc(NULL,
+ sizeof(rte_spinlock_t),
+ LCORE_CACHE_SIZE);
+ rte_spinlock_init(h->multiwriter_lock);
+ }
+ } else
+ h->add_key = ADD_KEY_SINGLEWRITER;
+
+ /* Populate free slots ring. Entry zero is reserved for key misses. */
+ for (i = 1; i < params->entries + 1; i++)
+ rte_ring_sp_enqueue(r, (void *)((uintptr_t) i));
+
+ te->data = (void *) h;
+ TAILQ_INSERT_TAIL(hash_list, te, next);
+ rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);
+
+ return h;
+err_unlock:
+ rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);
+err:
+ rte_ring_free(r);
+ rte_free(te);
+ rte_free(h);
+ rte_free(buckets);
+ rte_free(k);
+ return NULL;
+}
+
+void
+rte_hash_free(struct rte_hash *h)
+{
+ struct rte_tailq_entry *te;
+ struct rte_hash_list *hash_list;
+
+ if (h == NULL)
+ return;
+
+ hash_list = RTE_TAILQ_CAST(rte_hash_tailq.head, rte_hash_list);
+
+ rte_rwlock_write_lock(RTE_EAL_TAILQ_RWLOCK);
+
+ /* find out tailq entry */
+ TAILQ_FOREACH(te, hash_list, next) {
+ if (te->data == (void *) h)
+ break;
+ }
+
+ if (te == NULL) {
+ rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);
+ return;
+ }
+
+ TAILQ_REMOVE(hash_list, te, next);
+
+ rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);
+
+ if (h->hw_trans_mem_support)
+ rte_free(h->local_free_slots);
+
+ if (h->add_key == ADD_KEY_MULTIWRITER)
+ rte_free(h->multiwriter_lock);
+ rte_ring_free(h->free_slots);
+ rte_free(h->key_store);
+ rte_free(h->buckets);
+ rte_free(h);
+ rte_free(te);
+}
+
+hash_sig_t
+rte_hash_hash(const struct rte_hash *h, const void *key)
+{
+ /* calc hash result by key */
+ return h->hash_func(key, h->key_len, h->hash_func_init_val);
+}
+
+/* Calc the secondary hash value from the primary hash value of a given key */
+static inline hash_sig_t
+rte_hash_secondary_hash(const hash_sig_t primary_hash)
+{
+ static const unsigned all_bits_shift = 12;
+ static const unsigned alt_bits_xor = 0x5bd1e995;
+
+ uint32_t tag = primary_hash >> all_bits_shift;
+
+ return primary_hash ^ ((tag + 1) * alt_bits_xor);
+}
+
+void
+rte_hash_reset(struct rte_hash *h)
+{
+ void *ptr;
+ unsigned i;
+
+ if (h == NULL)
+ return;
+
+ memset(h->buckets, 0, h->num_buckets * sizeof(struct rte_hash_bucket));
+ memset(h->key_store, 0, h->key_entry_size * (h->entries + 1));
+
+ /* clear the free ring */
+ while (rte_ring_dequeue(h->free_slots, &ptr) == 0)
+ rte_pause();
+
+ /* Repopulate the free slots ring. Entry zero is reserved for key misses */
+ for (i = 1; i < h->entries + 1; i++)
+ rte_ring_sp_enqueue(h->free_slots, (void *)((uintptr_t) i));
+
+ if (h->hw_trans_mem_support) {
+ /* Reset local caches per lcore */
+ for (i = 0; i < RTE_MAX_LCORE; i++)
+ h->local_free_slots[i].len = 0;
+ }
+}
+
+/* Search for an entry that can be pushed to its alternative location */
+static inline int
+make_space_bucket(const struct rte_hash *h, struct rte_hash_bucket *bkt)
+{
+ unsigned i, j;
+ int ret;
+ uint32_t next_bucket_idx;
+ struct rte_hash_bucket *next_bkt[RTE_HASH_BUCKET_ENTRIES];
+
+ /*
+ * Push existing item (search for bucket with space in
+ * alternative locations) to its alternative location
+ */
+ for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
+ /* Search for space in alternative locations */
+ next_bucket_idx = bkt->signatures[i].alt & h->bucket_bitmask;
+ next_bkt[i] = &h->buckets[next_bucket_idx];
+ for (j = 0; j < RTE_HASH_BUCKET_ENTRIES; j++) {
+ if (next_bkt[i]->signatures[j].sig == NULL_SIGNATURE)
+ break;
+ }
+
+ if (j != RTE_HASH_BUCKET_ENTRIES)
+ break;
+ }
+
+ /* Alternative location has spare room (end of recursive function) */
+ if (i != RTE_HASH_BUCKET_ENTRIES) {
+ next_bkt[i]->signatures[j].alt = bkt->signatures[i].current;
+ next_bkt[i]->signatures[j].current = bkt->signatures[i].alt;
+ next_bkt[i]->key_idx[j] = bkt->key_idx[i];
+ return i;
+ }
+
+ /* Pick entry that has not been pushed yet */
+ for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++)
+ if (bkt->flag[i] == 0)
+ break;
+
+ /* All entries have been pushed, so entry cannot be added */
+ if (i == RTE_HASH_BUCKET_ENTRIES)
+ return -ENOSPC;
+
+ /* Set flag to indicate that this entry is going to be pushed */
+ bkt->flag[i] = 1;
+ /* Need room in alternative bucket to insert the pushed entry */
+ ret = make_space_bucket(h, next_bkt[i]);
+ /*
+ * After recursive function.
+ * Clear flags and insert the pushed entry
+ * in its alternative location if successful,
+ * or return error
+ */
+ bkt->flag[i] = 0;
+ if (ret >= 0) {
+ next_bkt[i]->signatures[ret].alt = bkt->signatures[i].current;
+ next_bkt[i]->signatures[ret].current = bkt->signatures[i].alt;
+ next_bkt[i]->key_idx[ret] = bkt->key_idx[i];
+ return i;
+ } else
+ return ret;
+
+}
+
+/*
+ * Function called to enqueue back an index in the cache/ring,
+ * as slot has not being used and it can be used in the
+ * next addition attempt.
+ */
+static inline void
+enqueue_slot_back(const struct rte_hash *h,
+ struct lcore_cache *cached_free_slots,
+ void *slot_id)
+{
+ if (h->hw_trans_mem_support) {
+ cached_free_slots->objs[cached_free_slots->len] = slot_id;
+ cached_free_slots->len++;
+ } else
+ rte_ring_sp_enqueue(h->free_slots, slot_id);
+}
+
+static inline int32_t
+__rte_hash_add_key_with_hash(const struct rte_hash *h, const void *key,
+ hash_sig_t sig, void *data)
+{
+ hash_sig_t alt_hash;
+ uint32_t prim_bucket_idx, sec_bucket_idx;
+ unsigned i;
+ struct rte_hash_bucket *prim_bkt, *sec_bkt;
+ struct rte_hash_key *new_k, *k, *keys = h->key_store;
+ void *slot_id = NULL;
+ uint32_t new_idx;
+ int ret;
+ unsigned n_slots;
+ unsigned lcore_id;
+ struct lcore_cache *cached_free_slots = NULL;
+
+ if (h->add_key == ADD_KEY_MULTIWRITER)
+ rte_spinlock_lock(h->multiwriter_lock);
+
+ prim_bucket_idx = sig & h->bucket_bitmask;
+ prim_bkt = &h->buckets[prim_bucket_idx];
+ rte_prefetch0(prim_bkt);
+
+ alt_hash = rte_hash_secondary_hash(sig);
+ sec_bucket_idx = alt_hash & h->bucket_bitmask;
+ sec_bkt = &h->buckets[sec_bucket_idx];
+ rte_prefetch0(sec_bkt);
+
+ /* Get a new slot for storing the new key */
+ if (h->hw_trans_mem_support) {
+ lcore_id = rte_lcore_id();
+ cached_free_slots = &h->local_free_slots[lcore_id];
+ /* Try to get a free slot from the local cache */
+ if (cached_free_slots->len == 0) {
+ /* Need to get another burst of free slots from global ring */
+ n_slots = rte_ring_mc_dequeue_burst(h->free_slots,
+ cached_free_slots->objs, LCORE_CACHE_SIZE);
+ if (n_slots == 0)
+ return -ENOSPC;
+
+ cached_free_slots->len += n_slots;
+ }
+
+ /* Get a free slot from the local cache */
+ cached_free_slots->len--;
+ slot_id = cached_free_slots->objs[cached_free_slots->len];
+ } else {
+ if (rte_ring_sc_dequeue(h->free_slots, &slot_id) != 0)
+ return -ENOSPC;
+ }
+
+ new_k = RTE_PTR_ADD(keys, (uintptr_t)slot_id * h->key_entry_size);
+ rte_prefetch0(new_k);
+ new_idx = (uint32_t)((uintptr_t) slot_id);
+
+ /* Check if key is already inserted in primary location */
+ for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
+ if (prim_bkt->signatures[i].current == sig &&
+ prim_bkt->signatures[i].alt == alt_hash) {
+ k = (struct rte_hash_key *) ((char *)keys +
+ prim_bkt->key_idx[i] * h->key_entry_size);
+ if (rte_hash_cmp_eq(key, k->key, h) == 0) {
+ /* Enqueue index of free slot back in the ring. */
+ enqueue_slot_back(h, cached_free_slots, slot_id);
+ /* Update data */
+ k->pdata = data;
+ /*
+ * Return index where key is stored,
+ * substracting the first dummy index
+ */
+ return prim_bkt->key_idx[i] - 1;
+ }
+ }
+ }
+
+ /* Check if key is already inserted in secondary location */
+ for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
+ if (sec_bkt->signatures[i].alt == sig &&
+ sec_bkt->signatures[i].current == alt_hash) {
+ k = (struct rte_hash_key *) ((char *)keys +
+ sec_bkt->key_idx[i] * h->key_entry_size);
+ if (rte_hash_cmp_eq(key, k->key, h) == 0) {
+ /* Enqueue index of free slot back in the ring. */
+ enqueue_slot_back(h, cached_free_slots, slot_id);
+ /* Update data */
+ k->pdata = data;
+ /*
+ * Return index where key is stored,
+ * substracting the first dummy index
+ */
+ return sec_bkt->key_idx[i] - 1;
+ }
+ }
+ }
+
+ /* Copy key */
+ rte_memcpy(new_k->key, key, h->key_len);
+ new_k->pdata = data;
+
+#if defined(RTE_ARCH_X86) /* currently only x86 support HTM */
+ if (h->add_key == ADD_KEY_MULTIWRITER_TM) {
+ ret = rte_hash_cuckoo_insert_mw_tm(prim_bkt,
+ sig, alt_hash, new_idx);
+ if (ret >= 0)
+ return new_idx - 1;
+
+ /* Primary bucket full, need to make space for new entry */
+ ret = rte_hash_cuckoo_make_space_mw_tm(h, prim_bkt, sig,
+ alt_hash, new_idx);
+
+ if (ret >= 0)
+ return new_idx - 1;
+
+ /* Also search secondary bucket to get better occupancy */
+ ret = rte_hash_cuckoo_make_space_mw_tm(h, sec_bkt, sig,
+ alt_hash, new_idx);
+
+ if (ret >= 0)
+ return new_idx - 1;
+ } else {
+#endif
+ for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
+ /* Check if slot is available */
+ if (likely(prim_bkt->signatures[i].sig == NULL_SIGNATURE)) {
+ prim_bkt->signatures[i].current = sig;
+ prim_bkt->signatures[i].alt = alt_hash;
+ prim_bkt->key_idx[i] = new_idx;
+ break;
+ }
+ }
+
+ if (i != RTE_HASH_BUCKET_ENTRIES) {
+ if (h->add_key == ADD_KEY_MULTIWRITER)
+ rte_spinlock_unlock(h->multiwriter_lock);
+ return new_idx - 1;
+ }
+
+ /* Primary bucket full, need to make space for new entry
+ * After recursive function.
+ * Insert the new entry in the position of the pushed entry
+ * if successful or return error and
+ * store the new slot back in the ring
+ */
+ ret = make_space_bucket(h, prim_bkt);
+ if (ret >= 0) {
+ prim_bkt->signatures[ret].current = sig;
+ prim_bkt->signatures[ret].alt = alt_hash;
+ prim_bkt->key_idx[ret] = new_idx;
+ if (h->add_key == ADD_KEY_MULTIWRITER)
+ rte_spinlock_unlock(h->multiwriter_lock);
+ return new_idx - 1;
+ }
+#if defined(RTE_ARCH_X86)
+ }
+#endif
+ /* Error in addition, store new slot back in the ring and return error */
+ enqueue_slot_back(h, cached_free_slots, (void *)((uintptr_t) new_idx));
+
+ if (h->add_key == ADD_KEY_MULTIWRITER)
+ rte_spinlock_unlock(h->multiwriter_lock);
+ return ret;
+}
+
+int32_t
+rte_hash_add_key_with_hash(const struct rte_hash *h,
+ const void *key, hash_sig_t sig)
+{
+ RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
+ return __rte_hash_add_key_with_hash(h, key, sig, 0);
+}
+
+int32_t
+rte_hash_add_key(const struct rte_hash *h, const void *key)
+{
+ RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
+ return __rte_hash_add_key_with_hash(h, key, rte_hash_hash(h, key), 0);
+}
+
+int
+rte_hash_add_key_with_hash_data(const struct rte_hash *h,
+ const void *key, hash_sig_t sig, void *data)
+{
+ int ret;
+
+ RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
+ ret = __rte_hash_add_key_with_hash(h, key, sig, data);
+ if (ret >= 0)
+ return 0;
+ else
+ return ret;
+}
+
+int
+rte_hash_add_key_data(const struct rte_hash *h, const void *key, void *data)
+{
+ int ret;
+
+ RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
+
+ ret = __rte_hash_add_key_with_hash(h, key, rte_hash_hash(h, key), data);
+ if (ret >= 0)
+ return 0;
+ else
+ return ret;
+}
+static inline int32_t
+__rte_hash_lookup_with_hash(const struct rte_hash *h, const void *key,
+ hash_sig_t sig, void **data)
+{
+ uint32_t bucket_idx;
+ hash_sig_t alt_hash;
+ unsigned i;
+ struct rte_hash_bucket *bkt;
+ struct rte_hash_key *k, *keys = h->key_store;
+
+ bucket_idx = sig & h->bucket_bitmask;
+ bkt = &h->buckets[bucket_idx];
+
+ /* Check if key is in primary location */
+ for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
+ if (bkt->signatures[i].current == sig &&
+ bkt->signatures[i].sig != NULL_SIGNATURE) {
+ k = (struct rte_hash_key *) ((char *)keys +
+ bkt->key_idx[i] * h->key_entry_size);
+ if (rte_hash_cmp_eq(key, k->key, h) == 0) {
+ if (data != NULL)
+ *data = k->pdata;
+ /*
+ * Return index where key is stored,
+ * substracting the first dummy index
+ */
+ return bkt->key_idx[i] - 1;
+ }
+ }
+ }
+
+ /* Calculate secondary hash */
+ alt_hash = rte_hash_secondary_hash(sig);
+ bucket_idx = alt_hash & h->bucket_bitmask;
+ bkt = &h->buckets[bucket_idx];
+
+ /* Check if key is in secondary location */
+ for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
+ if (bkt->signatures[i].current == alt_hash &&
+ bkt->signatures[i].alt == sig) {
+ k = (struct rte_hash_key *) ((char *)keys +
+ bkt->key_idx[i] * h->key_entry_size);
+ if (rte_hash_cmp_eq(key, k->key, h) == 0) {
+ if (data != NULL)
+ *data = k->pdata;
+ /*
+ * Return index where key is stored,
+ * substracting the first dummy index
+ */
+ return bkt->key_idx[i] - 1;
+ }
+ }
+ }
+
+ return -ENOENT;
+}
+
+int32_t
+rte_hash_lookup_with_hash(const struct rte_hash *h,
+ const void *key, hash_sig_t sig)
+{
+ RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
+ return __rte_hash_lookup_with_hash(h, key, sig, NULL);
+}
+
+int32_t
+rte_hash_lookup(const struct rte_hash *h, const void *key)
+{
+ RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
+ return __rte_hash_lookup_with_hash(h, key, rte_hash_hash(h, key), NULL);
+}
+
+int
+rte_hash_lookup_with_hash_data(const struct rte_hash *h,
+ const void *key, hash_sig_t sig, void **data)
+{
+ RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
+ return __rte_hash_lookup_with_hash(h, key, sig, data);
+}
+
+int
+rte_hash_lookup_data(const struct rte_hash *h, const void *key, void **data)
+{
+ RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
+ return __rte_hash_lookup_with_hash(h, key, rte_hash_hash(h, key), data);
+}
+
+static inline void
+remove_entry(const struct rte_hash *h, struct rte_hash_bucket *bkt, unsigned i)
+{
+ unsigned lcore_id, n_slots;
+ struct lcore_cache *cached_free_slots;
+
+ bkt->signatures[i].sig = NULL_SIGNATURE;
+ if (h->hw_trans_mem_support) {
+ lcore_id = rte_lcore_id();
+ cached_free_slots = &h->local_free_slots[lcore_id];
+ /* Cache full, need to free it. */
+ if (cached_free_slots->len == LCORE_CACHE_SIZE) {
+ /* Need to enqueue the free slots in global ring. */
+ n_slots = rte_ring_mp_enqueue_burst(h->free_slots,
+ cached_free_slots->objs,
+ LCORE_CACHE_SIZE);
+ cached_free_slots->len -= n_slots;
+ }
+ /* Put index of new free slot in cache. */
+ cached_free_slots->objs[cached_free_slots->len] =
+ (void *)((uintptr_t)bkt->key_idx[i]);
+ cached_free_slots->len++;
+ } else {
+ rte_ring_sp_enqueue(h->free_slots,
+ (void *)((uintptr_t)bkt->key_idx[i]));
+ }
+}
+
+static inline int32_t
+__rte_hash_del_key_with_hash(const struct rte_hash *h, const void *key,
+ hash_sig_t sig)
+{
+ uint32_t bucket_idx;
+ hash_sig_t alt_hash;
+ unsigned i;
+ struct rte_hash_bucket *bkt;
+ struct rte_hash_key *k, *keys = h->key_store;
+
+ bucket_idx = sig & h->bucket_bitmask;
+ bkt = &h->buckets[bucket_idx];
+
+ /* Check if key is in primary location */
+ for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
+ if (bkt->signatures[i].current == sig &&
+ bkt->signatures[i].sig != NULL_SIGNATURE) {
+ k = (struct rte_hash_key *) ((char *)keys +
+ bkt->key_idx[i] * h->key_entry_size);
+ if (rte_hash_cmp_eq(key, k->key, h) == 0) {
+ remove_entry(h, bkt, i);
+
+ /*
+ * Return index where key is stored,
+ * substracting the first dummy index
+ */
+ return bkt->key_idx[i] - 1;
+ }
+ }
+ }
+
+ /* Calculate secondary hash */
+ alt_hash = rte_hash_secondary_hash(sig);
+ bucket_idx = alt_hash & h->bucket_bitmask;
+ bkt = &h->buckets[bucket_idx];
+
+ /* Check if key is in secondary location */
+ for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
+ if (bkt->signatures[i].current == alt_hash &&
+ bkt->signatures[i].sig != NULL_SIGNATURE) {
+ k = (struct rte_hash_key *) ((char *)keys +
+ bkt->key_idx[i] * h->key_entry_size);
+ if (rte_hash_cmp_eq(key, k->key, h) == 0) {
+ remove_entry(h, bkt, i);
+
+ /*
+ * Return index where key is stored,
+ * substracting the first dummy index
+ */
+ return bkt->key_idx[i] - 1;
+ }
+ }
+ }
+
+ return -ENOENT;
+}
+
+int32_t
+rte_hash_del_key_with_hash(const struct rte_hash *h,
+ const void *key, hash_sig_t sig)
+{
+ RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
+ return __rte_hash_del_key_with_hash(h, key, sig);
+}
+
+int32_t
+rte_hash_del_key(const struct rte_hash *h, const void *key)
+{
+ RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
+ return __rte_hash_del_key_with_hash(h, key, rte_hash_hash(h, key));
+}
+
+int
+rte_hash_get_key_with_position(const struct rte_hash *h, const int32_t position,
+ void **key)
+{
+ RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
+
+ struct rte_hash_key *k, *keys = h->key_store;
+ k = (struct rte_hash_key *) ((char *) keys + (position + 1) *
+ h->key_entry_size);
+ *key = k->key;
+
+ if (position !=
+ __rte_hash_lookup_with_hash(h, *key, rte_hash_hash(h, *key),
+ NULL)) {
+ return -ENOENT;
+ }
+
+ return 0;
+}
+
+/* Lookup bulk stage 0: Prefetch input key */
+static inline void
+lookup_stage0(unsigned *idx, uint64_t *lookup_mask,
+ const void * const *keys)
+{
+ *idx = __builtin_ctzl(*lookup_mask);
+ if (*lookup_mask == 0)
+ *idx = 0;
+
+ rte_prefetch0(keys[*idx]);
+ *lookup_mask &= ~(1llu << *idx);
+}
+
+/*
+ * Lookup bulk stage 1: Calculate primary/secondary hashes
+ * and prefetch primary/secondary buckets
+ */
+static inline void
+lookup_stage1(unsigned idx, hash_sig_t *prim_hash, hash_sig_t *sec_hash,
+ const struct rte_hash_bucket **primary_bkt,
+ const struct rte_hash_bucket **secondary_bkt,
+ hash_sig_t *hash_vals, const void * const *keys,
+ const struct rte_hash *h)
+{
+ *prim_hash = rte_hash_hash(h, keys[idx]);
+ hash_vals[idx] = *prim_hash;
+ *sec_hash = rte_hash_secondary_hash(*prim_hash);
+
+ *primary_bkt = &h->buckets[*prim_hash & h->bucket_bitmask];
+ *secondary_bkt = &h->buckets[*sec_hash & h->bucket_bitmask];
+
+ rte_prefetch0(*primary_bkt);
+ rte_prefetch0(*secondary_bkt);
+}
+
+/*
+ * Lookup bulk stage 2: Search for match hashes in primary/secondary locations
+ * and prefetch first key slot
+ */
+static inline void
+lookup_stage2(unsigned idx, hash_sig_t prim_hash, hash_sig_t sec_hash,
+ const struct rte_hash_bucket *prim_bkt,
+ const struct rte_hash_bucket *sec_bkt,
+ const struct rte_hash_key **key_slot, int32_t *positions,
+ uint64_t *extra_hits_mask, const void *keys,
+ const struct rte_hash *h)
+{
+ unsigned prim_hash_matches, sec_hash_matches, key_idx, i;
+ unsigned total_hash_matches;
+
+ prim_hash_matches = 1 << RTE_HASH_BUCKET_ENTRIES;
+ sec_hash_matches = 1 << RTE_HASH_BUCKET_ENTRIES;
+ for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
+ prim_hash_matches |= ((prim_hash == prim_bkt->signatures[i].current) << i);
+ sec_hash_matches |= ((sec_hash == sec_bkt->signatures[i].current) << i);
+ }
+
+ key_idx = prim_bkt->key_idx[__builtin_ctzl(prim_hash_matches)];
+ if (key_idx == 0)
+ key_idx = sec_bkt->key_idx[__builtin_ctzl(sec_hash_matches)];
+
+ total_hash_matches = (prim_hash_matches |
+ (sec_hash_matches << (RTE_HASH_BUCKET_ENTRIES + 1)));
+ *key_slot = (const struct rte_hash_key *) ((const char *)keys +
+ key_idx * h->key_entry_size);
+
+ rte_prefetch0(*key_slot);
+ /*
+ * Return index where key is stored,
+ * substracting the first dummy index
+ */
+ positions[idx] = (key_idx - 1);
+
+ *extra_hits_mask |= (uint64_t)(__builtin_popcount(total_hash_matches) > 3) << idx;
+
+}
+
+
+/* Lookup bulk stage 3: Check if key matches, update hit mask and return data */
+static inline void
+lookup_stage3(unsigned idx, const struct rte_hash_key *key_slot, const void * const *keys,
+ const int32_t *positions, void *data[], uint64_t *hits,
+ const struct rte_hash *h)
+{
+ unsigned hit;
+ unsigned key_idx;
+
+ hit = !rte_hash_cmp_eq(key_slot->key, keys[idx], h);
+ if (data != NULL)
+ data[idx] = key_slot->pdata;
+
+ key_idx = positions[idx] + 1;
+ /*
+ * If key index is 0, force hit to be 0, in case key to be looked up
+ * is all zero (as in the dummy slot), which would result in a wrong hit
+ */
+ *hits |= (uint64_t)(hit && !!key_idx) << idx;
+}
+
+static inline void
+__rte_hash_lookup_bulk(const struct rte_hash *h, const void **keys,
+ uint32_t num_keys, int32_t *positions,
+ uint64_t *hit_mask, void *data[])
+{
+ uint64_t hits = 0;
+ uint64_t extra_hits_mask = 0;
+ uint64_t lookup_mask, miss_mask;
+ unsigned idx;
+ const void *key_store = h->key_store;
+ int ret;
+ hash_sig_t hash_vals[RTE_HASH_LOOKUP_BULK_MAX];
+
+ unsigned idx00, idx01, idx10, idx11, idx20, idx21, idx30, idx31;
+ const struct rte_hash_bucket *primary_bkt10, *primary_bkt11;
+ const struct rte_hash_bucket *secondary_bkt10, *secondary_bkt11;
+ const struct rte_hash_bucket *primary_bkt20, *primary_bkt21;
+ const struct rte_hash_bucket *secondary_bkt20, *secondary_bkt21;
+ const struct rte_hash_key *k_slot20, *k_slot21, *k_slot30, *k_slot31;
+ hash_sig_t primary_hash10, primary_hash11;
+ hash_sig_t secondary_hash10, secondary_hash11;
+ hash_sig_t primary_hash20, primary_hash21;
+ hash_sig_t secondary_hash20, secondary_hash21;
+
+ lookup_mask = (uint64_t) -1 >> (64 - num_keys);
+ miss_mask = lookup_mask;
+
+ lookup_stage0(&idx00, &lookup_mask, keys);
+ lookup_stage0(&idx01, &lookup_mask, keys);
+
+ idx10 = idx00, idx11 = idx01;
+
+ lookup_stage0(&idx00, &lookup_mask, keys);
+ lookup_stage0(&idx01, &lookup_mask, keys);
+ lookup_stage1(idx10, &primary_hash10, &secondary_hash10,
+ &primary_bkt10, &secondary_bkt10, hash_vals, keys, h);
+ lookup_stage1(idx11, &primary_hash11, &secondary_hash11,
+ &primary_bkt11, &secondary_bkt11, hash_vals, keys, h);
+
+ primary_bkt20 = primary_bkt10;
+ primary_bkt21 = primary_bkt11;
+ secondary_bkt20 = secondary_bkt10;
+ secondary_bkt21 = secondary_bkt11;
+ primary_hash20 = primary_hash10;
+ primary_hash21 = primary_hash11;
+ secondary_hash20 = secondary_hash10;
+ secondary_hash21 = secondary_hash11;
+ idx20 = idx10, idx21 = idx11;
+ idx10 = idx00, idx11 = idx01;
+
+ lookup_stage0(&idx00, &lookup_mask, keys);
+ lookup_stage0(&idx01, &lookup_mask, keys);
+ lookup_stage1(idx10, &primary_hash10, &secondary_hash10,
+ &primary_bkt10, &secondary_bkt10, hash_vals, keys, h);
+ lookup_stage1(idx11, &primary_hash11, &secondary_hash11,
+ &primary_bkt11, &secondary_bkt11, hash_vals, keys, h);
+ lookup_stage2(idx20, primary_hash20, secondary_hash20, primary_bkt20,
+ secondary_bkt20, &k_slot20, positions, &extra_hits_mask,
+ key_store, h);
+ lookup_stage2(idx21, primary_hash21, secondary_hash21, primary_bkt21,
+ secondary_bkt21, &k_slot21, positions, &extra_hits_mask,
+ key_store, h);
+
+ while (lookup_mask) {
+ k_slot30 = k_slot20, k_slot31 = k_slot21;
+ idx30 = idx20, idx31 = idx21;
+ primary_bkt20 = primary_bkt10;
+ primary_bkt21 = primary_bkt11;
+ secondary_bkt20 = secondary_bkt10;
+ secondary_bkt21 = secondary_bkt11;
+ primary_hash20 = primary_hash10;
+ primary_hash21 = primary_hash11;
+ secondary_hash20 = secondary_hash10;
+ secondary_hash21 = secondary_hash11;
+ idx20 = idx10, idx21 = idx11;
+ idx10 = idx00, idx11 = idx01;
+
+ lookup_stage0(&idx00, &lookup_mask, keys);
+ lookup_stage0(&idx01, &lookup_mask, keys);
+ lookup_stage1(idx10, &primary_hash10, &secondary_hash10,
+ &primary_bkt10, &secondary_bkt10, hash_vals, keys, h);
+ lookup_stage1(idx11, &primary_hash11, &secondary_hash11,
+ &primary_bkt11, &secondary_bkt11, hash_vals, keys, h);
+ lookup_stage2(idx20, primary_hash20, secondary_hash20,
+ primary_bkt20, secondary_bkt20, &k_slot20, positions,
+ &extra_hits_mask, key_store, h);
+ lookup_stage2(idx21, primary_hash21, secondary_hash21,
+ primary_bkt21, secondary_bkt21, &k_slot21, positions,
+ &extra_hits_mask, key_store, h);
+ lookup_stage3(idx30, k_slot30, keys, positions, data, &hits, h);
+ lookup_stage3(idx31, k_slot31, keys, positions, data, &hits, h);
+ }
+
+ k_slot30 = k_slot20, k_slot31 = k_slot21;
+ idx30 = idx20, idx31 = idx21;
+ primary_bkt20 = primary_bkt10;
+ primary_bkt21 = primary_bkt11;
+ secondary_bkt20 = secondary_bkt10;
+ secondary_bkt21 = secondary_bkt11;
+ primary_hash20 = primary_hash10;
+ primary_hash21 = primary_hash11;
+ secondary_hash20 = secondary_hash10;
+ secondary_hash21 = secondary_hash11;
+ idx20 = idx10, idx21 = idx11;
+ idx10 = idx00, idx11 = idx01;
+
+ lookup_stage1(idx10, &primary_hash10, &secondary_hash10,
+ &primary_bkt10, &secondary_bkt10, hash_vals, keys, h);
+ lookup_stage1(idx11, &primary_hash11, &secondary_hash11,
+ &primary_bkt11, &secondary_bkt11, hash_vals, keys, h);
+ lookup_stage2(idx20, primary_hash20, secondary_hash20, primary_bkt20,
+ secondary_bkt20, &k_slot20, positions, &extra_hits_mask,
+ key_store, h);
+ lookup_stage2(idx21, primary_hash21, secondary_hash21, primary_bkt21,
+ secondary_bkt21, &k_slot21, positions, &extra_hits_mask,
+ key_store, h);
+ lookup_stage3(idx30, k_slot30, keys, positions, data, &hits, h);
+ lookup_stage3(idx31, k_slot31, keys, positions, data, &hits, h);
+
+ k_slot30 = k_slot20, k_slot31 = k_slot21;
+ idx30 = idx20, idx31 = idx21;
+ primary_bkt20 = primary_bkt10;
+ primary_bkt21 = primary_bkt11;
+ secondary_bkt20 = secondary_bkt10;
+ secondary_bkt21 = secondary_bkt11;
+ primary_hash20 = primary_hash10;
+ primary_hash21 = primary_hash11;
+ secondary_hash20 = secondary_hash10;
+ secondary_hash21 = secondary_hash11;
+ idx20 = idx10, idx21 = idx11;
+
+ lookup_stage2(idx20, primary_hash20, secondary_hash20, primary_bkt20,
+ secondary_bkt20, &k_slot20, positions, &extra_hits_mask,
+ key_store, h);
+ lookup_stage2(idx21, primary_hash21, secondary_hash21, primary_bkt21,
+ secondary_bkt21, &k_slot21, positions, &extra_hits_mask,
+ key_store, h);
+ lookup_stage3(idx30, k_slot30, keys, positions, data, &hits, h);
+ lookup_stage3(idx31, k_slot31, keys, positions, data, &hits, h);
+
+ k_slot30 = k_slot20, k_slot31 = k_slot21;
+ idx30 = idx20, idx31 = idx21;
+
+ lookup_stage3(idx30, k_slot30, keys, positions, data, &hits, h);
+ lookup_stage3(idx31, k_slot31, keys, positions, data, &hits, h);
+
+ /* ignore any items we have already found */
+ extra_hits_mask &= ~hits;
+
+ if (unlikely(extra_hits_mask)) {
+ /* run a single search for each remaining item */
+ do {
+ idx = __builtin_ctzl(extra_hits_mask);
+ if (data != NULL) {
+ ret = rte_hash_lookup_with_hash_data(h,
+ keys[idx], hash_vals[idx], &data[idx]);
+ if (ret >= 0)
+ hits |= 1ULL << idx;
+ } else {
+ positions[idx] = rte_hash_lookup_with_hash(h,
+ keys[idx], hash_vals[idx]);
+ if (positions[idx] >= 0)
+ hits |= 1llu << idx;
+ }
+ extra_hits_mask &= ~(1llu << idx);
+ } while (extra_hits_mask);
+ }
+
+ miss_mask &= ~hits;
+ if (unlikely(miss_mask)) {
+ do {
+ idx = __builtin_ctzl(miss_mask);
+ positions[idx] = -ENOENT;
+ miss_mask &= ~(1llu << idx);
+ } while (miss_mask);
+ }
+
+ if (hit_mask != NULL)
+ *hit_mask = hits;
+}
+
+int
+rte_hash_lookup_bulk(const struct rte_hash *h, const void **keys,
+ uint32_t num_keys, int32_t *positions)
+{
+ RETURN_IF_TRUE(((h == NULL) || (keys == NULL) || (num_keys == 0) ||
+ (num_keys > RTE_HASH_LOOKUP_BULK_MAX) ||
+ (positions == NULL)), -EINVAL);
+
+ __rte_hash_lookup_bulk(h, keys, num_keys, positions, NULL, NULL);
+ return 0;
+}
+
+int
+rte_hash_lookup_bulk_data(const struct rte_hash *h, const void **keys,
+ uint32_t num_keys, uint64_t *hit_mask, void *data[])
+{
+ RETURN_IF_TRUE(((h == NULL) || (keys == NULL) || (num_keys == 0) ||
+ (num_keys > RTE_HASH_LOOKUP_BULK_MAX) ||
+ (hit_mask == NULL)), -EINVAL);
+
+ int32_t positions[num_keys];
+
+ __rte_hash_lookup_bulk(h, keys, num_keys, positions, hit_mask, data);
+
+ /* Return number of hits */
+ return __builtin_popcountl(*hit_mask);
+}
+
+int32_t
+rte_hash_iterate(const struct rte_hash *h, const void **key, void **data, uint32_t *next)
+{
+ uint32_t bucket_idx, idx, position;
+ struct rte_hash_key *next_key;
+
+ RETURN_IF_TRUE(((h == NULL) || (next == NULL)), -EINVAL);
+
+ const uint32_t total_entries = h->num_buckets * RTE_HASH_BUCKET_ENTRIES;
+ /* Out of bounds */
+ if (*next >= total_entries)
+ return -ENOENT;
+
+ /* Calculate bucket and index of current iterator */
+ bucket_idx = *next / RTE_HASH_BUCKET_ENTRIES;
+ idx = *next % RTE_HASH_BUCKET_ENTRIES;
+
+ /* If current position is empty, go to the next one */
+ while (h->buckets[bucket_idx].signatures[idx].sig == NULL_SIGNATURE) {
+ (*next)++;
+ /* End of table */
+ if (*next == total_entries)
+ return -ENOENT;
+ bucket_idx = *next / RTE_HASH_BUCKET_ENTRIES;
+ idx = *next % RTE_HASH_BUCKET_ENTRIES;
+ }
+
+ /* Get position of entry in key table */
+ position = h->buckets[bucket_idx].key_idx[idx];
+ next_key = (struct rte_hash_key *) ((char *)h->key_store +
+ position * h->key_entry_size);
+ /* Return key and data */
+ *key = next_key->key;
+ *data = next_key->pdata;
+
+ /* Increment iterator */
+ (*next)++;
+
+ return position - 1;
+}