diff options
Diffstat (limited to 'src/dpdk22/drivers/net/e1000/base/e1000_nvm.c')
-rw-r--r-- | src/dpdk22/drivers/net/e1000/base/e1000_nvm.c | 1384 |
1 files changed, 0 insertions, 1384 deletions
diff --git a/src/dpdk22/drivers/net/e1000/base/e1000_nvm.c b/src/dpdk22/drivers/net/e1000/base/e1000_nvm.c deleted file mode 100644 index 762acd16..00000000 --- a/src/dpdk22/drivers/net/e1000/base/e1000_nvm.c +++ /dev/null @@ -1,1384 +0,0 @@ -/******************************************************************************* - -Copyright (c) 2001-2015, Intel Corporation -All rights reserved. - -Redistribution and use in source and binary forms, with or without -modification, are permitted provided that the following conditions are met: - - 1. Redistributions of source code must retain the above copyright notice, - this list of conditions and the following disclaimer. - - 2. Redistributions in binary form must reproduce the above copyright - notice, this list of conditions and the following disclaimer in the - documentation and/or other materials provided with the distribution. - - 3. Neither the name of the Intel Corporation nor the names of its - contributors may be used to endorse or promote products derived from - this software without specific prior written permission. - -THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" -AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE -IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE -ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE -LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR -CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF -SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS -INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN -CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) -ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE -POSSIBILITY OF SUCH DAMAGE. - -***************************************************************************/ - -#include "e1000_api.h" - -STATIC void e1000_reload_nvm_generic(struct e1000_hw *hw); - -/** - * e1000_init_nvm_ops_generic - Initialize NVM function pointers - * @hw: pointer to the HW structure - * - * Setups up the function pointers to no-op functions - **/ -void e1000_init_nvm_ops_generic(struct e1000_hw *hw) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - DEBUGFUNC("e1000_init_nvm_ops_generic"); - - /* Initialize function pointers */ - nvm->ops.init_params = e1000_null_ops_generic; - nvm->ops.acquire = e1000_null_ops_generic; - nvm->ops.read = e1000_null_read_nvm; - nvm->ops.release = e1000_null_nvm_generic; - nvm->ops.reload = e1000_reload_nvm_generic; - nvm->ops.update = e1000_null_ops_generic; - nvm->ops.valid_led_default = e1000_null_led_default; - nvm->ops.validate = e1000_null_ops_generic; - nvm->ops.write = e1000_null_write_nvm; -} - -/** - * e1000_null_nvm_read - No-op function, return 0 - * @hw: pointer to the HW structure - **/ -s32 e1000_null_read_nvm(struct e1000_hw E1000_UNUSEDARG *hw, - u16 E1000_UNUSEDARG a, u16 E1000_UNUSEDARG b, - u16 E1000_UNUSEDARG *c) -{ - DEBUGFUNC("e1000_null_read_nvm"); - UNREFERENCED_4PARAMETER(hw, a, b, c); - return E1000_SUCCESS; -} - -/** - * e1000_null_nvm_generic - No-op function, return void - * @hw: pointer to the HW structure - **/ -void e1000_null_nvm_generic(struct e1000_hw E1000_UNUSEDARG *hw) -{ - DEBUGFUNC("e1000_null_nvm_generic"); - UNREFERENCED_1PARAMETER(hw); - return; -} - -/** - * e1000_null_led_default - No-op function, return 0 - * @hw: pointer to the HW structure - **/ -s32 e1000_null_led_default(struct e1000_hw E1000_UNUSEDARG *hw, - u16 E1000_UNUSEDARG *data) -{ - DEBUGFUNC("e1000_null_led_default"); - UNREFERENCED_2PARAMETER(hw, data); - return E1000_SUCCESS; -} - -/** - * e1000_null_write_nvm - No-op function, return 0 - * @hw: pointer to the HW structure - **/ -s32 e1000_null_write_nvm(struct e1000_hw E1000_UNUSEDARG *hw, - u16 E1000_UNUSEDARG a, u16 E1000_UNUSEDARG b, - u16 E1000_UNUSEDARG *c) -{ - DEBUGFUNC("e1000_null_write_nvm"); - UNREFERENCED_4PARAMETER(hw, a, b, c); - return E1000_SUCCESS; -} - -/** - * e1000_raise_eec_clk - Raise EEPROM clock - * @hw: pointer to the HW structure - * @eecd: pointer to the EEPROM - * - * Enable/Raise the EEPROM clock bit. - **/ -STATIC void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd) -{ - *eecd = *eecd | E1000_EECD_SK; - E1000_WRITE_REG(hw, E1000_EECD, *eecd); - E1000_WRITE_FLUSH(hw); - usec_delay(hw->nvm.delay_usec); -} - -/** - * e1000_lower_eec_clk - Lower EEPROM clock - * @hw: pointer to the HW structure - * @eecd: pointer to the EEPROM - * - * Clear/Lower the EEPROM clock bit. - **/ -STATIC void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd) -{ - *eecd = *eecd & ~E1000_EECD_SK; - E1000_WRITE_REG(hw, E1000_EECD, *eecd); - E1000_WRITE_FLUSH(hw); - usec_delay(hw->nvm.delay_usec); -} - -/** - * e1000_shift_out_eec_bits - Shift data bits our to the EEPROM - * @hw: pointer to the HW structure - * @data: data to send to the EEPROM - * @count: number of bits to shift out - * - * We need to shift 'count' bits out to the EEPROM. So, the value in the - * "data" parameter will be shifted out to the EEPROM one bit at a time. - * In order to do this, "data" must be broken down into bits. - **/ -STATIC void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - u32 eecd = E1000_READ_REG(hw, E1000_EECD); - u32 mask; - - DEBUGFUNC("e1000_shift_out_eec_bits"); - - mask = 0x01 << (count - 1); - if (nvm->type == e1000_nvm_eeprom_microwire) - eecd &= ~E1000_EECD_DO; - else - if (nvm->type == e1000_nvm_eeprom_spi) - eecd |= E1000_EECD_DO; - - do { - eecd &= ~E1000_EECD_DI; - - if (data & mask) - eecd |= E1000_EECD_DI; - - E1000_WRITE_REG(hw, E1000_EECD, eecd); - E1000_WRITE_FLUSH(hw); - - usec_delay(nvm->delay_usec); - - e1000_raise_eec_clk(hw, &eecd); - e1000_lower_eec_clk(hw, &eecd); - - mask >>= 1; - } while (mask); - - eecd &= ~E1000_EECD_DI; - E1000_WRITE_REG(hw, E1000_EECD, eecd); -} - -/** - * e1000_shift_in_eec_bits - Shift data bits in from the EEPROM - * @hw: pointer to the HW structure - * @count: number of bits to shift in - * - * In order to read a register from the EEPROM, we need to shift 'count' bits - * in from the EEPROM. Bits are "shifted in" by raising the clock input to - * the EEPROM (setting the SK bit), and then reading the value of the data out - * "DO" bit. During this "shifting in" process the data in "DI" bit should - * always be clear. - **/ -STATIC u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count) -{ - u32 eecd; - u32 i; - u16 data; - - DEBUGFUNC("e1000_shift_in_eec_bits"); - - eecd = E1000_READ_REG(hw, E1000_EECD); - - eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); - data = 0; - - for (i = 0; i < count; i++) { - data <<= 1; - e1000_raise_eec_clk(hw, &eecd); - - eecd = E1000_READ_REG(hw, E1000_EECD); - - eecd &= ~E1000_EECD_DI; - if (eecd & E1000_EECD_DO) - data |= 1; - - e1000_lower_eec_clk(hw, &eecd); - } - - return data; -} - -/** - * e1000_poll_eerd_eewr_done - Poll for EEPROM read/write completion - * @hw: pointer to the HW structure - * @ee_reg: EEPROM flag for polling - * - * Polls the EEPROM status bit for either read or write completion based - * upon the value of 'ee_reg'. - **/ -s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg) -{ - u32 attempts = 100000; - u32 i, reg = 0; - - DEBUGFUNC("e1000_poll_eerd_eewr_done"); - - for (i = 0; i < attempts; i++) { - if (ee_reg == E1000_NVM_POLL_READ) - reg = E1000_READ_REG(hw, E1000_EERD); - else - reg = E1000_READ_REG(hw, E1000_EEWR); - - if (reg & E1000_NVM_RW_REG_DONE) - return E1000_SUCCESS; - - usec_delay(5); - } - - return -E1000_ERR_NVM; -} - -/** - * e1000_acquire_nvm_generic - Generic request for access to EEPROM - * @hw: pointer to the HW structure - * - * Set the EEPROM access request bit and wait for EEPROM access grant bit. - * Return successful if access grant bit set, else clear the request for - * EEPROM access and return -E1000_ERR_NVM (-1). - **/ -s32 e1000_acquire_nvm_generic(struct e1000_hw *hw) -{ - u32 eecd = E1000_READ_REG(hw, E1000_EECD); - s32 timeout = E1000_NVM_GRANT_ATTEMPTS; - - DEBUGFUNC("e1000_acquire_nvm_generic"); - - E1000_WRITE_REG(hw, E1000_EECD, eecd | E1000_EECD_REQ); - eecd = E1000_READ_REG(hw, E1000_EECD); - - while (timeout) { - if (eecd & E1000_EECD_GNT) - break; - usec_delay(5); - eecd = E1000_READ_REG(hw, E1000_EECD); - timeout--; - } - - if (!timeout) { - eecd &= ~E1000_EECD_REQ; - E1000_WRITE_REG(hw, E1000_EECD, eecd); - DEBUGOUT("Could not acquire NVM grant\n"); - return -E1000_ERR_NVM; - } - - return E1000_SUCCESS; -} - -/** - * e1000_standby_nvm - Return EEPROM to standby state - * @hw: pointer to the HW structure - * - * Return the EEPROM to a standby state. - **/ -STATIC void e1000_standby_nvm(struct e1000_hw *hw) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - u32 eecd = E1000_READ_REG(hw, E1000_EECD); - - DEBUGFUNC("e1000_standby_nvm"); - - if (nvm->type == e1000_nvm_eeprom_microwire) { - eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); - E1000_WRITE_REG(hw, E1000_EECD, eecd); - E1000_WRITE_FLUSH(hw); - usec_delay(nvm->delay_usec); - - e1000_raise_eec_clk(hw, &eecd); - - /* Select EEPROM */ - eecd |= E1000_EECD_CS; - E1000_WRITE_REG(hw, E1000_EECD, eecd); - E1000_WRITE_FLUSH(hw); - usec_delay(nvm->delay_usec); - - e1000_lower_eec_clk(hw, &eecd); - } else if (nvm->type == e1000_nvm_eeprom_spi) { - /* Toggle CS to flush commands */ - eecd |= E1000_EECD_CS; - E1000_WRITE_REG(hw, E1000_EECD, eecd); - E1000_WRITE_FLUSH(hw); - usec_delay(nvm->delay_usec); - eecd &= ~E1000_EECD_CS; - E1000_WRITE_REG(hw, E1000_EECD, eecd); - E1000_WRITE_FLUSH(hw); - usec_delay(nvm->delay_usec); - } -} - -/** - * e1000_stop_nvm - Terminate EEPROM command - * @hw: pointer to the HW structure - * - * Terminates the current command by inverting the EEPROM's chip select pin. - **/ -void e1000_stop_nvm(struct e1000_hw *hw) -{ - u32 eecd; - - DEBUGFUNC("e1000_stop_nvm"); - - eecd = E1000_READ_REG(hw, E1000_EECD); - if (hw->nvm.type == e1000_nvm_eeprom_spi) { - /* Pull CS high */ - eecd |= E1000_EECD_CS; - e1000_lower_eec_clk(hw, &eecd); - } else if (hw->nvm.type == e1000_nvm_eeprom_microwire) { - /* CS on Microwire is active-high */ - eecd &= ~(E1000_EECD_CS | E1000_EECD_DI); - E1000_WRITE_REG(hw, E1000_EECD, eecd); - e1000_raise_eec_clk(hw, &eecd); - e1000_lower_eec_clk(hw, &eecd); - } -} - -/** - * e1000_release_nvm_generic - Release exclusive access to EEPROM - * @hw: pointer to the HW structure - * - * Stop any current commands to the EEPROM and clear the EEPROM request bit. - **/ -void e1000_release_nvm_generic(struct e1000_hw *hw) -{ - u32 eecd; - - DEBUGFUNC("e1000_release_nvm_generic"); - - e1000_stop_nvm(hw); - - eecd = E1000_READ_REG(hw, E1000_EECD); - eecd &= ~E1000_EECD_REQ; - E1000_WRITE_REG(hw, E1000_EECD, eecd); -} - -/** - * e1000_ready_nvm_eeprom - Prepares EEPROM for read/write - * @hw: pointer to the HW structure - * - * Setups the EEPROM for reading and writing. - **/ -STATIC s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - u32 eecd = E1000_READ_REG(hw, E1000_EECD); - u8 spi_stat_reg; - - DEBUGFUNC("e1000_ready_nvm_eeprom"); - - if (nvm->type == e1000_nvm_eeprom_microwire) { - /* Clear SK and DI */ - eecd &= ~(E1000_EECD_DI | E1000_EECD_SK); - E1000_WRITE_REG(hw, E1000_EECD, eecd); - /* Set CS */ - eecd |= E1000_EECD_CS; - E1000_WRITE_REG(hw, E1000_EECD, eecd); - } else if (nvm->type == e1000_nvm_eeprom_spi) { - u16 timeout = NVM_MAX_RETRY_SPI; - - /* Clear SK and CS */ - eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); - E1000_WRITE_REG(hw, E1000_EECD, eecd); - E1000_WRITE_FLUSH(hw); - usec_delay(1); - - /* Read "Status Register" repeatedly until the LSB is cleared. - * The EEPROM will signal that the command has been completed - * by clearing bit 0 of the internal status register. If it's - * not cleared within 'timeout', then error out. - */ - while (timeout) { - e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI, - hw->nvm.opcode_bits); - spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8); - if (!(spi_stat_reg & NVM_STATUS_RDY_SPI)) - break; - - usec_delay(5); - e1000_standby_nvm(hw); - timeout--; - } - - if (!timeout) { - DEBUGOUT("SPI NVM Status error\n"); - return -E1000_ERR_NVM; - } - } - - return E1000_SUCCESS; -} - -/** - * e1000_read_nvm_spi - Read EEPROM's using SPI - * @hw: pointer to the HW structure - * @offset: offset of word in the EEPROM to read - * @words: number of words to read - * @data: word read from the EEPROM - * - * Reads a 16 bit word from the EEPROM. - **/ -s32 e1000_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - u32 i = 0; - s32 ret_val; - u16 word_in; - u8 read_opcode = NVM_READ_OPCODE_SPI; - - DEBUGFUNC("e1000_read_nvm_spi"); - - /* A check for invalid values: offset too large, too many words, - * and not enough words. - */ - if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || - (words == 0)) { - DEBUGOUT("nvm parameter(s) out of bounds\n"); - return -E1000_ERR_NVM; - } - - ret_val = nvm->ops.acquire(hw); - if (ret_val) - return ret_val; - - ret_val = e1000_ready_nvm_eeprom(hw); - if (ret_val) - goto release; - - e1000_standby_nvm(hw); - - if ((nvm->address_bits == 8) && (offset >= 128)) - read_opcode |= NVM_A8_OPCODE_SPI; - - /* Send the READ command (opcode + addr) */ - e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits); - e1000_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits); - - /* Read the data. SPI NVMs increment the address with each byte - * read and will roll over if reading beyond the end. This allows - * us to read the whole NVM from any offset - */ - for (i = 0; i < words; i++) { - word_in = e1000_shift_in_eec_bits(hw, 16); - data[i] = (word_in >> 8) | (word_in << 8); - } - -release: - nvm->ops.release(hw); - - return ret_val; -} - -/** - * e1000_read_nvm_microwire - Reads EEPROM's using microwire - * @hw: pointer to the HW structure - * @offset: offset of word in the EEPROM to read - * @words: number of words to read - * @data: word read from the EEPROM - * - * Reads a 16 bit word from the EEPROM. - **/ -s32 e1000_read_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words, - u16 *data) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - u32 i = 0; - s32 ret_val; - u8 read_opcode = NVM_READ_OPCODE_MICROWIRE; - - DEBUGFUNC("e1000_read_nvm_microwire"); - - /* A check for invalid values: offset too large, too many words, - * and not enough words. - */ - if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || - (words == 0)) { - DEBUGOUT("nvm parameter(s) out of bounds\n"); - return -E1000_ERR_NVM; - } - - ret_val = nvm->ops.acquire(hw); - if (ret_val) - return ret_val; - - ret_val = e1000_ready_nvm_eeprom(hw); - if (ret_val) - goto release; - - for (i = 0; i < words; i++) { - /* Send the READ command (opcode + addr) */ - e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits); - e1000_shift_out_eec_bits(hw, (u16)(offset + i), - nvm->address_bits); - - /* Read the data. For microwire, each word requires the - * overhead of setup and tear-down. - */ - data[i] = e1000_shift_in_eec_bits(hw, 16); - e1000_standby_nvm(hw); - } - -release: - nvm->ops.release(hw); - - return ret_val; -} - -/** - * e1000_read_nvm_eerd - Reads EEPROM using EERD register - * @hw: pointer to the HW structure - * @offset: offset of word in the EEPROM to read - * @words: number of words to read - * @data: word read from the EEPROM - * - * Reads a 16 bit word from the EEPROM using the EERD register. - **/ -s32 e1000_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - u32 i, eerd = 0; - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_read_nvm_eerd"); - - /* A check for invalid values: offset too large, too many words, - * too many words for the offset, and not enough words. - */ - if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || - (words == 0)) { - DEBUGOUT("nvm parameter(s) out of bounds\n"); - return -E1000_ERR_NVM; - } - - for (i = 0; i < words; i++) { - eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) + - E1000_NVM_RW_REG_START; - - E1000_WRITE_REG(hw, E1000_EERD, eerd); - ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ); - if (ret_val) - break; - - data[i] = (E1000_READ_REG(hw, E1000_EERD) >> - E1000_NVM_RW_REG_DATA); - } - - if (ret_val) - DEBUGOUT1("NVM read error: %d\n", ret_val); - - return ret_val; -} - -/** - * e1000_write_nvm_spi - Write to EEPROM using SPI - * @hw: pointer to the HW structure - * @offset: offset within the EEPROM to be written to - * @words: number of words to write - * @data: 16 bit word(s) to be written to the EEPROM - * - * Writes data to EEPROM at offset using SPI interface. - * - * If e1000_update_nvm_checksum is not called after this function , the - * EEPROM will most likely contain an invalid checksum. - **/ -s32 e1000_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - s32 ret_val = -E1000_ERR_NVM; - u16 widx = 0; - - DEBUGFUNC("e1000_write_nvm_spi"); - - /* A check for invalid values: offset too large, too many words, - * and not enough words. - */ - if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || - (words == 0)) { - DEBUGOUT("nvm parameter(s) out of bounds\n"); - return -E1000_ERR_NVM; - } - - while (widx < words) { - u8 write_opcode = NVM_WRITE_OPCODE_SPI; - - ret_val = nvm->ops.acquire(hw); - if (ret_val) - return ret_val; - - ret_val = e1000_ready_nvm_eeprom(hw); - if (ret_val) { - nvm->ops.release(hw); - return ret_val; - } - - e1000_standby_nvm(hw); - - /* Send the WRITE ENABLE command (8 bit opcode) */ - e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI, - nvm->opcode_bits); - - e1000_standby_nvm(hw); - - /* Some SPI eeproms use the 8th address bit embedded in the - * opcode - */ - if ((nvm->address_bits == 8) && (offset >= 128)) - write_opcode |= NVM_A8_OPCODE_SPI; - - /* Send the Write command (8-bit opcode + addr) */ - e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits); - e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2), - nvm->address_bits); - - /* Loop to allow for up to whole page write of eeprom */ - while (widx < words) { - u16 word_out = data[widx]; - word_out = (word_out >> 8) | (word_out << 8); - e1000_shift_out_eec_bits(hw, word_out, 16); - widx++; - - if ((((offset + widx) * 2) % nvm->page_size) == 0) { - e1000_standby_nvm(hw); - break; - } - } - msec_delay(10); - nvm->ops.release(hw); - } - - return ret_val; -} - -/** - * e1000_write_nvm_microwire - Writes EEPROM using microwire - * @hw: pointer to the HW structure - * @offset: offset within the EEPROM to be written to - * @words: number of words to write - * @data: 16 bit word(s) to be written to the EEPROM - * - * Writes data to EEPROM at offset using microwire interface. - * - * If e1000_update_nvm_checksum is not called after this function , the - * EEPROM will most likely contain an invalid checksum. - **/ -s32 e1000_write_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words, - u16 *data) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - s32 ret_val; - u32 eecd; - u16 words_written = 0; - u16 widx = 0; - - DEBUGFUNC("e1000_write_nvm_microwire"); - - /* A check for invalid values: offset too large, too many words, - * and not enough words. - */ - if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || - (words == 0)) { - DEBUGOUT("nvm parameter(s) out of bounds\n"); - return -E1000_ERR_NVM; - } - - ret_val = nvm->ops.acquire(hw); - if (ret_val) - return ret_val; - - ret_val = e1000_ready_nvm_eeprom(hw); - if (ret_val) - goto release; - - e1000_shift_out_eec_bits(hw, NVM_EWEN_OPCODE_MICROWIRE, - (u16)(nvm->opcode_bits + 2)); - - e1000_shift_out_eec_bits(hw, 0, (u16)(nvm->address_bits - 2)); - - e1000_standby_nvm(hw); - - while (words_written < words) { - e1000_shift_out_eec_bits(hw, NVM_WRITE_OPCODE_MICROWIRE, - nvm->opcode_bits); - - e1000_shift_out_eec_bits(hw, (u16)(offset + words_written), - nvm->address_bits); - - e1000_shift_out_eec_bits(hw, data[words_written], 16); - - e1000_standby_nvm(hw); - - for (widx = 0; widx < 200; widx++) { - eecd = E1000_READ_REG(hw, E1000_EECD); - if (eecd & E1000_EECD_DO) - break; - usec_delay(50); - } - - if (widx == 200) { - DEBUGOUT("NVM Write did not complete\n"); - ret_val = -E1000_ERR_NVM; - goto release; - } - - e1000_standby_nvm(hw); - - words_written++; - } - - e1000_shift_out_eec_bits(hw, NVM_EWDS_OPCODE_MICROWIRE, - (u16)(nvm->opcode_bits + 2)); - - e1000_shift_out_eec_bits(hw, 0, (u16)(nvm->address_bits - 2)); - -release: - nvm->ops.release(hw); - - return ret_val; -} - -/** - * e1000_read_pba_string_generic - Read device part number - * @hw: pointer to the HW structure - * @pba_num: pointer to device part number - * @pba_num_size: size of part number buffer - * - * Reads the product board assembly (PBA) number from the EEPROM and stores - * the value in pba_num. - **/ -s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num, - u32 pba_num_size) -{ - s32 ret_val; - u16 nvm_data; - u16 pba_ptr; - u16 offset; - u16 length; - - DEBUGFUNC("e1000_read_pba_string_generic"); - - if ((hw->mac.type >= e1000_i210) && - !e1000_get_flash_presence_i210(hw)) { - DEBUGOUT("Flashless no PBA string\n"); - return -E1000_ERR_NVM_PBA_SECTION; - } - - if (pba_num == NULL) { - DEBUGOUT("PBA string buffer was null\n"); - return -E1000_ERR_INVALID_ARGUMENT; - } - - ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - return ret_val; - } - - ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - return ret_val; - } - - /* if nvm_data is not ptr guard the PBA must be in legacy format which - * means pba_ptr is actually our second data word for the PBA number - * and we can decode it into an ascii string - */ - if (nvm_data != NVM_PBA_PTR_GUARD) { - DEBUGOUT("NVM PBA number is not stored as string\n"); - - /* make sure callers buffer is big enough to store the PBA */ - if (pba_num_size < E1000_PBANUM_LENGTH) { - DEBUGOUT("PBA string buffer too small\n"); - return E1000_ERR_NO_SPACE; - } - - /* extract hex string from data and pba_ptr */ - pba_num[0] = (nvm_data >> 12) & 0xF; - pba_num[1] = (nvm_data >> 8) & 0xF; - pba_num[2] = (nvm_data >> 4) & 0xF; - pba_num[3] = nvm_data & 0xF; - pba_num[4] = (pba_ptr >> 12) & 0xF; - pba_num[5] = (pba_ptr >> 8) & 0xF; - pba_num[6] = '-'; - pba_num[7] = 0; - pba_num[8] = (pba_ptr >> 4) & 0xF; - pba_num[9] = pba_ptr & 0xF; - - /* put a null character on the end of our string */ - pba_num[10] = '\0'; - - /* switch all the data but the '-' to hex char */ - for (offset = 0; offset < 10; offset++) { - if (pba_num[offset] < 0xA) - pba_num[offset] += '0'; - else if (pba_num[offset] < 0x10) - pba_num[offset] += 'A' - 0xA; - } - - return E1000_SUCCESS; - } - - ret_val = hw->nvm.ops.read(hw, pba_ptr, 1, &length); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - return ret_val; - } - - if (length == 0xFFFF || length == 0) { - DEBUGOUT("NVM PBA number section invalid length\n"); - return -E1000_ERR_NVM_PBA_SECTION; - } - /* check if pba_num buffer is big enough */ - if (pba_num_size < (((u32)length * 2) - 1)) { - DEBUGOUT("PBA string buffer too small\n"); - return -E1000_ERR_NO_SPACE; - } - - /* trim pba length from start of string */ - pba_ptr++; - length--; - - for (offset = 0; offset < length; offset++) { - ret_val = hw->nvm.ops.read(hw, pba_ptr + offset, 1, &nvm_data); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - return ret_val; - } - pba_num[offset * 2] = (u8)(nvm_data >> 8); - pba_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF); - } - pba_num[offset * 2] = '\0'; - - return E1000_SUCCESS; -} - -/** - * e1000_read_pba_length_generic - Read device part number length - * @hw: pointer to the HW structure - * @pba_num_size: size of part number buffer - * - * Reads the product board assembly (PBA) number length from the EEPROM and - * stores the value in pba_num_size. - **/ -s32 e1000_read_pba_length_generic(struct e1000_hw *hw, u32 *pba_num_size) -{ - s32 ret_val; - u16 nvm_data; - u16 pba_ptr; - u16 length; - - DEBUGFUNC("e1000_read_pba_length_generic"); - - if (pba_num_size == NULL) { - DEBUGOUT("PBA buffer size was null\n"); - return -E1000_ERR_INVALID_ARGUMENT; - } - - ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - return ret_val; - } - - ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - return ret_val; - } - - /* if data is not ptr guard the PBA must be in legacy format */ - if (nvm_data != NVM_PBA_PTR_GUARD) { - *pba_num_size = E1000_PBANUM_LENGTH; - return E1000_SUCCESS; - } - - ret_val = hw->nvm.ops.read(hw, pba_ptr, 1, &length); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - return ret_val; - } - - if (length == 0xFFFF || length == 0) { - DEBUGOUT("NVM PBA number section invalid length\n"); - return -E1000_ERR_NVM_PBA_SECTION; - } - - /* Convert from length in u16 values to u8 chars, add 1 for NULL, - * and subtract 2 because length field is included in length. - */ - *pba_num_size = ((u32)length * 2) - 1; - - return E1000_SUCCESS; -} - -/** - * e1000_read_pba_num_generic - Read device part number - * @hw: pointer to the HW structure - * @pba_num: pointer to device part number - * - * Reads the product board assembly (PBA) number from the EEPROM and stores - * the value in pba_num. - **/ -s32 e1000_read_pba_num_generic(struct e1000_hw *hw, u32 *pba_num) -{ - s32 ret_val; - u16 nvm_data; - - DEBUGFUNC("e1000_read_pba_num_generic"); - - ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - return ret_val; - } else if (nvm_data == NVM_PBA_PTR_GUARD) { - DEBUGOUT("NVM Not Supported\n"); - return -E1000_NOT_IMPLEMENTED; - } - *pba_num = (u32)(nvm_data << 16); - - ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &nvm_data); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - return ret_val; - } - *pba_num |= nvm_data; - - return E1000_SUCCESS; -} - - -/** - * e1000_read_pba_raw - * @hw: pointer to the HW structure - * @eeprom_buf: optional pointer to EEPROM image - * @eeprom_buf_size: size of EEPROM image in words - * @max_pba_block_size: PBA block size limit - * @pba: pointer to output PBA structure - * - * Reads PBA from EEPROM image when eeprom_buf is not NULL. - * Reads PBA from physical EEPROM device when eeprom_buf is NULL. - * - **/ -s32 e1000_read_pba_raw(struct e1000_hw *hw, u16 *eeprom_buf, - u32 eeprom_buf_size, u16 max_pba_block_size, - struct e1000_pba *pba) -{ - s32 ret_val; - u16 pba_block_size; - - if (pba == NULL) - return -E1000_ERR_PARAM; - - if (eeprom_buf == NULL) { - ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 2, - &pba->word[0]); - if (ret_val) - return ret_val; - } else { - if (eeprom_buf_size > NVM_PBA_OFFSET_1) { - pba->word[0] = eeprom_buf[NVM_PBA_OFFSET_0]; - pba->word[1] = eeprom_buf[NVM_PBA_OFFSET_1]; - } else { - return -E1000_ERR_PARAM; - } - } - - if (pba->word[0] == NVM_PBA_PTR_GUARD) { - if (pba->pba_block == NULL) - return -E1000_ERR_PARAM; - - ret_val = e1000_get_pba_block_size(hw, eeprom_buf, - eeprom_buf_size, - &pba_block_size); - if (ret_val) - return ret_val; - - if (pba_block_size > max_pba_block_size) - return -E1000_ERR_PARAM; - - if (eeprom_buf == NULL) { - ret_val = e1000_read_nvm(hw, pba->word[1], - pba_block_size, - pba->pba_block); - if (ret_val) - return ret_val; - } else { - if (eeprom_buf_size > (u32)(pba->word[1] + - pba_block_size)) { - memcpy(pba->pba_block, - &eeprom_buf[pba->word[1]], - pba_block_size * sizeof(u16)); - } else { - return -E1000_ERR_PARAM; - } - } - } - - return E1000_SUCCESS; -} - -/** - * e1000_write_pba_raw - * @hw: pointer to the HW structure - * @eeprom_buf: optional pointer to EEPROM image - * @eeprom_buf_size: size of EEPROM image in words - * @pba: pointer to PBA structure - * - * Writes PBA to EEPROM image when eeprom_buf is not NULL. - * Writes PBA to physical EEPROM device when eeprom_buf is NULL. - * - **/ -s32 e1000_write_pba_raw(struct e1000_hw *hw, u16 *eeprom_buf, - u32 eeprom_buf_size, struct e1000_pba *pba) -{ - s32 ret_val; - - if (pba == NULL) - return -E1000_ERR_PARAM; - - if (eeprom_buf == NULL) { - ret_val = e1000_write_nvm(hw, NVM_PBA_OFFSET_0, 2, - &pba->word[0]); - if (ret_val) - return ret_val; - } else { - if (eeprom_buf_size > NVM_PBA_OFFSET_1) { - eeprom_buf[NVM_PBA_OFFSET_0] = pba->word[0]; - eeprom_buf[NVM_PBA_OFFSET_1] = pba->word[1]; - } else { - return -E1000_ERR_PARAM; - } - } - - if (pba->word[0] == NVM_PBA_PTR_GUARD) { - if (pba->pba_block == NULL) - return -E1000_ERR_PARAM; - - if (eeprom_buf == NULL) { - ret_val = e1000_write_nvm(hw, pba->word[1], - pba->pba_block[0], - pba->pba_block); - if (ret_val) - return ret_val; - } else { - if (eeprom_buf_size > (u32)(pba->word[1] + - pba->pba_block[0])) { - memcpy(&eeprom_buf[pba->word[1]], - pba->pba_block, - pba->pba_block[0] * sizeof(u16)); - } else { - return -E1000_ERR_PARAM; - } - } - } - - return E1000_SUCCESS; -} - -/** - * e1000_get_pba_block_size - * @hw: pointer to the HW structure - * @eeprom_buf: optional pointer to EEPROM image - * @eeprom_buf_size: size of EEPROM image in words - * @pba_data_size: pointer to output variable - * - * Returns the size of the PBA block in words. Function operates on EEPROM - * image if the eeprom_buf pointer is not NULL otherwise it accesses physical - * EEPROM device. - * - **/ -s32 e1000_get_pba_block_size(struct e1000_hw *hw, u16 *eeprom_buf, - u32 eeprom_buf_size, u16 *pba_block_size) -{ - s32 ret_val; - u16 pba_word[2]; - u16 length; - - DEBUGFUNC("e1000_get_pba_block_size"); - - if (eeprom_buf == NULL) { - ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 2, &pba_word[0]); - if (ret_val) - return ret_val; - } else { - if (eeprom_buf_size > NVM_PBA_OFFSET_1) { - pba_word[0] = eeprom_buf[NVM_PBA_OFFSET_0]; - pba_word[1] = eeprom_buf[NVM_PBA_OFFSET_1]; - } else { - return -E1000_ERR_PARAM; - } - } - - if (pba_word[0] == NVM_PBA_PTR_GUARD) { - if (eeprom_buf == NULL) { - ret_val = e1000_read_nvm(hw, pba_word[1] + 0, 1, - &length); - if (ret_val) - return ret_val; - } else { - if (eeprom_buf_size > pba_word[1]) - length = eeprom_buf[pba_word[1] + 0]; - else - return -E1000_ERR_PARAM; - } - - if (length == 0xFFFF || length == 0) - return -E1000_ERR_NVM_PBA_SECTION; - } else { - /* PBA number in legacy format, there is no PBA Block. */ - length = 0; - } - - if (pba_block_size != NULL) - *pba_block_size = length; - - return E1000_SUCCESS; -} - -/** - * e1000_read_mac_addr_generic - Read device MAC address - * @hw: pointer to the HW structure - * - * Reads the device MAC address from the EEPROM and stores the value. - * Since devices with two ports use the same EEPROM, we increment the - * last bit in the MAC address for the second port. - **/ -s32 e1000_read_mac_addr_generic(struct e1000_hw *hw) -{ - u32 rar_high; - u32 rar_low; - u16 i; - - rar_high = E1000_READ_REG(hw, E1000_RAH(0)); - rar_low = E1000_READ_REG(hw, E1000_RAL(0)); - - for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++) - hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8)); - - for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++) - hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8)); - - for (i = 0; i < ETH_ADDR_LEN; i++) - hw->mac.addr[i] = hw->mac.perm_addr[i]; - - return E1000_SUCCESS; -} - -/** - * e1000_validate_nvm_checksum_generic - Validate EEPROM checksum - * @hw: pointer to the HW structure - * - * Calculates the EEPROM checksum by reading/adding each word of the EEPROM - * and then verifies that the sum of the EEPROM is equal to 0xBABA. - **/ -s32 e1000_validate_nvm_checksum_generic(struct e1000_hw *hw) -{ - s32 ret_val; - u16 checksum = 0; - u16 i, nvm_data; - - DEBUGFUNC("e1000_validate_nvm_checksum_generic"); - - for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { - ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - return ret_val; - } - checksum += nvm_data; - } - - if (checksum != (u16) NVM_SUM) { - DEBUGOUT("NVM Checksum Invalid\n"); - return -E1000_ERR_NVM; - } - - return E1000_SUCCESS; -} - -/** - * e1000_update_nvm_checksum_generic - Update EEPROM checksum - * @hw: pointer to the HW structure - * - * Updates the EEPROM checksum by reading/adding each word of the EEPROM - * up to the checksum. Then calculates the EEPROM checksum and writes the - * value to the EEPROM. - **/ -s32 e1000_update_nvm_checksum_generic(struct e1000_hw *hw) -{ - s32 ret_val; - u16 checksum = 0; - u16 i, nvm_data; - - DEBUGFUNC("e1000_update_nvm_checksum"); - - for (i = 0; i < NVM_CHECKSUM_REG; i++) { - ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); - if (ret_val) { - DEBUGOUT("NVM Read Error while updating checksum.\n"); - return ret_val; - } - checksum += nvm_data; - } - checksum = (u16) NVM_SUM - checksum; - ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum); - if (ret_val) - DEBUGOUT("NVM Write Error while updating checksum.\n"); - - return ret_val; -} - -/** - * e1000_reload_nvm_generic - Reloads EEPROM - * @hw: pointer to the HW structure - * - * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the - * extended control register. - **/ -STATIC void e1000_reload_nvm_generic(struct e1000_hw *hw) -{ - u32 ctrl_ext; - - DEBUGFUNC("e1000_reload_nvm_generic"); - - usec_delay(10); - ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); - ctrl_ext |= E1000_CTRL_EXT_EE_RST; - E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); - E1000_WRITE_FLUSH(hw); -} - -/** - * e1000_get_fw_version - Get firmware version information - * @hw: pointer to the HW structure - * @fw_vers: pointer to output version structure - * - * unsupported/not present features return 0 in version structure - **/ -void e1000_get_fw_version(struct e1000_hw *hw, struct e1000_fw_version *fw_vers) -{ - u16 eeprom_verh, eeprom_verl, etrack_test, fw_version; - u8 q, hval, rem, result; - u16 comb_verh, comb_verl, comb_offset; - - memset(fw_vers, 0, sizeof(struct e1000_fw_version)); - - /* basic eeprom version numbers, bits used vary by part and by tool - * used to create the nvm images */ - /* Check which data format we have */ - switch (hw->mac.type) { - case e1000_i211: - e1000_read_invm_version(hw, fw_vers); - return; - case e1000_82575: - case e1000_82576: - case e1000_82580: - hw->nvm.ops.read(hw, NVM_ETRACK_HIWORD, 1, &etrack_test); - /* Use this format, unless EETRACK ID exists, - * then use alternate format - */ - if ((etrack_test & NVM_MAJOR_MASK) != NVM_ETRACK_VALID) { - hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version); - fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK) - >> NVM_MAJOR_SHIFT; - fw_vers->eep_minor = (fw_version & NVM_MINOR_MASK) - >> NVM_MINOR_SHIFT; - fw_vers->eep_build = (fw_version & NVM_IMAGE_ID_MASK); - goto etrack_id; - } - break; - case e1000_i210: - if (!(e1000_get_flash_presence_i210(hw))) { - e1000_read_invm_version(hw, fw_vers); - return; - } - /* fall through */ - case e1000_i350: - hw->nvm.ops.read(hw, NVM_ETRACK_HIWORD, 1, &etrack_test); - /* find combo image version */ - hw->nvm.ops.read(hw, NVM_COMB_VER_PTR, 1, &comb_offset); - if ((comb_offset != 0x0) && - (comb_offset != NVM_VER_INVALID)) { - - hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset - + 1), 1, &comb_verh); - hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset), - 1, &comb_verl); - - /* get Option Rom version if it exists and is valid */ - if ((comb_verh && comb_verl) && - ((comb_verh != NVM_VER_INVALID) && - (comb_verl != NVM_VER_INVALID))) { - - fw_vers->or_valid = true; - fw_vers->or_major = - comb_verl >> NVM_COMB_VER_SHFT; - fw_vers->or_build = - (comb_verl << NVM_COMB_VER_SHFT) - | (comb_verh >> NVM_COMB_VER_SHFT); - fw_vers->or_patch = - comb_verh & NVM_COMB_VER_MASK; - } - } - break; - default: - hw->nvm.ops.read(hw, NVM_ETRACK_HIWORD, 1, &etrack_test); - return; - } - hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version); - fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK) - >> NVM_MAJOR_SHIFT; - - /* check for old style version format in newer images*/ - if ((fw_version & NVM_NEW_DEC_MASK) == 0x0) { - eeprom_verl = (fw_version & NVM_COMB_VER_MASK); - } else { - eeprom_verl = (fw_version & NVM_MINOR_MASK) - >> NVM_MINOR_SHIFT; - } - /* Convert minor value to hex before assigning to output struct - * Val to be converted will not be higher than 99, per tool output - */ - q = eeprom_verl / NVM_HEX_CONV; - hval = q * NVM_HEX_TENS; - rem = eeprom_verl % NVM_HEX_CONV; - result = hval + rem; - fw_vers->eep_minor = result; - -etrack_id: - if ((etrack_test & NVM_MAJOR_MASK) == NVM_ETRACK_VALID) { - hw->nvm.ops.read(hw, NVM_ETRACK_WORD, 1, &eeprom_verl); - hw->nvm.ops.read(hw, (NVM_ETRACK_WORD + 1), 1, &eeprom_verh); - fw_vers->etrack_id = (eeprom_verh << NVM_ETRACK_SHIFT) - | eeprom_verl; - } else if ((etrack_test & NVM_ETRACK_VALID) == 0) { - hw->nvm.ops.read(hw, NVM_ETRACK_WORD, 1, &eeprom_verh); - hw->nvm.ops.read(hw, (NVM_ETRACK_WORD + 1), 1, &eeprom_verl); - fw_vers->etrack_id = (eeprom_verh << NVM_ETRACK_SHIFT) | - eeprom_verl; - } -} - - |