summaryrefslogtreecommitdiffstats
path: root/src/dpdk22/drivers/net/i40e/i40e_rxtx.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/dpdk22/drivers/net/i40e/i40e_rxtx.c')
-rw-r--r--src/dpdk22/drivers/net/i40e/i40e_rxtx.c3307
1 files changed, 0 insertions, 3307 deletions
diff --git a/src/dpdk22/drivers/net/i40e/i40e_rxtx.c b/src/dpdk22/drivers/net/i40e/i40e_rxtx.c
deleted file mode 100644
index ee3c3c1a..00000000
--- a/src/dpdk22/drivers/net/i40e/i40e_rxtx.c
+++ /dev/null
@@ -1,3307 +0,0 @@
-/*-
- * BSD LICENSE
- *
- * Copyright(c) 2010-2015 Intel Corporation. All rights reserved.
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * * Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * * Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in
- * the documentation and/or other materials provided with the
- * distribution.
- * * Neither the name of Intel Corporation nor the names of its
- * contributors may be used to endorse or promote products derived
- * from this software without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- */
-
-#include <stdio.h>
-#include <stdlib.h>
-#include <string.h>
-#include <errno.h>
-#include <stdint.h>
-#include <stdarg.h>
-#include <unistd.h>
-#include <inttypes.h>
-#include <sys/queue.h>
-
-#include <rte_string_fns.h>
-#include <rte_memzone.h>
-#include <rte_mbuf.h>
-#include <rte_malloc.h>
-#include <rte_ether.h>
-#include <rte_ethdev.h>
-#include <rte_tcp.h>
-#include <rte_sctp.h>
-#include <rte_udp.h>
-
-#include "i40e_logs.h"
-#include "base/i40e_prototype.h"
-#include "base/i40e_type.h"
-#include "i40e_ethdev.h"
-#include "i40e_rxtx.h"
-
-#define DEFAULT_TX_RS_THRESH 32
-#define DEFAULT_TX_FREE_THRESH 32
-#define I40E_MAX_PKT_TYPE 256
-
-#define I40E_TX_MAX_BURST 32
-
-#define I40E_DMA_MEM_ALIGN 4096
-
-/* Base address of the HW descriptor ring should be 128B aligned. */
-#define I40E_RING_BASE_ALIGN 128
-
-#define I40E_SIMPLE_FLAGS ((uint32_t)ETH_TXQ_FLAGS_NOMULTSEGS | \
- ETH_TXQ_FLAGS_NOOFFLOADS)
-
-#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
-
-#define I40E_TX_CKSUM_OFFLOAD_MASK ( \
- PKT_TX_IP_CKSUM | \
- PKT_TX_L4_MASK | \
- PKT_TX_OUTER_IP_CKSUM)
-
-#define RTE_MBUF_DATA_DMA_ADDR_DEFAULT(mb) \
- (uint64_t) ((mb)->buf_physaddr + RTE_PKTMBUF_HEADROOM)
-
-#define RTE_MBUF_DATA_DMA_ADDR(mb) \
- ((uint64_t)((mb)->buf_physaddr + (mb)->data_off))
-
-static uint16_t i40e_xmit_pkts_simple(void *tx_queue,
- struct rte_mbuf **tx_pkts,
- uint16_t nb_pkts);
-
-static inline void
-i40e_rxd_to_vlan_tci(struct rte_mbuf *mb, volatile union i40e_rx_desc *rxdp)
-{
- if (rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
- (1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
- mb->ol_flags |= PKT_RX_VLAN_PKT;
- mb->vlan_tci =
- rte_le_to_cpu_16(rxdp->wb.qword0.lo_dword.l2tag1);
- PMD_RX_LOG(DEBUG, "Descriptor l2tag1: %u",
- rte_le_to_cpu_16(rxdp->wb.qword0.lo_dword.l2tag1));
- } else {
- mb->vlan_tci = 0;
- }
-#ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
- if (rte_le_to_cpu_16(rxdp->wb.qword2.ext_status) &
- (1 << I40E_RX_DESC_EXT_STATUS_L2TAG2P_SHIFT)) {
- mb->ol_flags |= PKT_RX_QINQ_PKT;
- mb->vlan_tci_outer = mb->vlan_tci;
- mb->vlan_tci = rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_2);
- PMD_RX_LOG(DEBUG, "Descriptor l2tag2_1: %u, l2tag2_2: %u",
- rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_1),
- rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_2));
- } else {
- mb->vlan_tci_outer = 0;
- }
-#endif
- PMD_RX_LOG(DEBUG, "Mbuf vlan_tci: %u, vlan_tci_outer: %u",
- mb->vlan_tci, mb->vlan_tci_outer);
-}
-
-/* Translate the rx descriptor status to pkt flags */
-static inline uint64_t
-i40e_rxd_status_to_pkt_flags(uint64_t qword)
-{
- uint64_t flags;
-
- /* Check if RSS_HASH */
- flags = (((qword >> I40E_RX_DESC_STATUS_FLTSTAT_SHIFT) &
- I40E_RX_DESC_FLTSTAT_RSS_HASH) ==
- I40E_RX_DESC_FLTSTAT_RSS_HASH) ? PKT_RX_RSS_HASH : 0;
-
- /* Check if FDIR Match */
- flags |= (qword & (1 << I40E_RX_DESC_STATUS_FLM_SHIFT) ?
- PKT_RX_FDIR : 0);
-
- return flags;
-}
-
-static inline uint64_t
-i40e_rxd_error_to_pkt_flags(uint64_t qword)
-{
- uint64_t flags = 0;
- uint64_t error_bits = (qword >> I40E_RXD_QW1_ERROR_SHIFT);
-
-#define I40E_RX_ERR_BITS 0x3f
- if (likely((error_bits & I40E_RX_ERR_BITS) == 0))
- return flags;
- /* If RXE bit set, all other status bits are meaningless */
- if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_RXE_SHIFT))) {
- flags |= PKT_RX_MAC_ERR;
- return flags;
- }
-
- /* If RECIPE bit set, all other status indications should be ignored */
- if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_RECIPE_SHIFT))) {
- flags |= PKT_RX_RECIP_ERR;
- return flags;
- }
- if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_HBO_SHIFT)))
- flags |= PKT_RX_HBUF_OVERFLOW;
- if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_IPE_SHIFT)))
- flags |= PKT_RX_IP_CKSUM_BAD;
- if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_L4E_SHIFT)))
- flags |= PKT_RX_L4_CKSUM_BAD;
- if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_EIPE_SHIFT)))
- flags |= PKT_RX_EIP_CKSUM_BAD;
- if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_OVERSIZE_SHIFT)))
- flags |= PKT_RX_OVERSIZE;
-
- return flags;
-}
-
-/* Function to check and set the ieee1588 timesync index and get the
- * appropriate flags.
- */
-#ifdef RTE_LIBRTE_IEEE1588
-static inline uint64_t
-i40e_get_iee15888_flags(struct rte_mbuf *mb, uint64_t qword)
-{
- uint64_t pkt_flags = 0;
- uint16_t tsyn = (qword & (I40E_RXD_QW1_STATUS_TSYNVALID_MASK
- | I40E_RXD_QW1_STATUS_TSYNINDX_MASK))
- >> I40E_RX_DESC_STATUS_TSYNINDX_SHIFT;
-
- if ((mb->packet_type & RTE_PTYPE_L2_MASK)
- == RTE_PTYPE_L2_ETHER_TIMESYNC)
- pkt_flags = PKT_RX_IEEE1588_PTP;
- if (tsyn & 0x04) {
- pkt_flags |= PKT_RX_IEEE1588_TMST;
- mb->timesync = tsyn & 0x03;
- }
-
- return pkt_flags;
-}
-#endif
-
-/* For each value it means, datasheet of hardware can tell more details */
-static inline uint32_t
-i40e_rxd_pkt_type_mapping(uint8_t ptype)
-{
- static const uint32_t ptype_table[UINT8_MAX] __rte_cache_aligned = {
- /* L2 types */
- /* [0] reserved */
- [1] = RTE_PTYPE_L2_ETHER,
- [2] = RTE_PTYPE_L2_ETHER_TIMESYNC,
- /* [3] - [5] reserved */
- [6] = RTE_PTYPE_L2_ETHER_LLDP,
- /* [7] - [10] reserved */
- [11] = RTE_PTYPE_L2_ETHER_ARP,
- /* [12] - [21] reserved */
-
- /* Non tunneled IPv4 */
- [22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_L4_FRAG,
- [23] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_L4_NONFRAG,
- [24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_L4_UDP,
- /* [25] reserved */
- [26] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_L4_TCP,
- [27] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_L4_SCTP,
- [28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_L4_ICMP,
-
- /* IPv4 --> IPv4 */
- [29] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_IP |
- RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_FRAG,
- [30] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_IP |
- RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_NONFRAG,
- [31] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_IP |
- RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_UDP,
- /* [32] reserved */
- [33] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_IP |
- RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_TCP,
- [34] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_IP |
- RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_SCTP,
- [35] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_IP |
- RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_ICMP,
-
- /* IPv4 --> IPv6 */
- [36] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_IP |
- RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_FRAG,
- [37] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_IP |
- RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_NONFRAG,
- [38] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_IP |
- RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_UDP,
- /* [39] reserved */
- [40] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_IP |
- RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_TCP,
- [41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_IP |
- RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_SCTP,
- [42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_IP |
- RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_ICMP,
-
- /* IPv4 --> GRE/Teredo/VXLAN */
- [43] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT,
-
- /* IPv4 --> GRE/Teredo/VXLAN --> IPv4 */
- [44] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT |
- RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_FRAG,
- [45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT |
- RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_NONFRAG,
- [46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT |
- RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_UDP,
- /* [47] reserved */
- [48] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT |
- RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_TCP,
- [49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT |
- RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_SCTP,
- [50] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT |
- RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_ICMP,
-
- /* IPv4 --> GRE/Teredo/VXLAN --> IPv6 */
- [51] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT |
- RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_FRAG,
- [52] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT |
- RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_NONFRAG,
- [53] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT |
- RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_UDP,
- /* [54] reserved */
- [55] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT |
- RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_TCP,
- [56] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT |
- RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_SCTP,
- [57] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT |
- RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_ICMP,
-
- /* IPv4 --> GRE/Teredo/VXLAN --> MAC */
- [58] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
-
- /* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
- [59] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
- RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_FRAG,
- [60] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
- RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_NONFRAG,
- [61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
- RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_UDP,
- /* [62] reserved */
- [63] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
- RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_TCP,
- [64] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
- RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_SCTP,
- [65] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
- RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_ICMP,
-
- /* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
- [66] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
- RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_FRAG,
- [67] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
- RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_NONFRAG,
- [68] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
- RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_UDP,
- /* [69] reserved */
- [70] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
- RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_TCP,
- [71] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
- RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_SCTP,
- [72] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
- RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_ICMP,
-
- /* IPv4 --> GRE/Teredo/VXLAN --> MAC/VLAN */
- [73] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT |
- RTE_PTYPE_INNER_L2_ETHER_VLAN,
-
- /* IPv4 --> GRE/Teredo/VXLAN --> MAC/VLAN --> IPv4 */
- [74] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT |
- RTE_PTYPE_INNER_L2_ETHER_VLAN |
- RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_FRAG,
- [75] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT |
- RTE_PTYPE_INNER_L2_ETHER_VLAN |
- RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_NONFRAG,
- [76] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT |
- RTE_PTYPE_INNER_L2_ETHER_VLAN |
- RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_UDP,
- /* [77] reserved */
- [78] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT |
- RTE_PTYPE_INNER_L2_ETHER_VLAN |
- RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_TCP,
- [79] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT |
- RTE_PTYPE_INNER_L2_ETHER_VLAN |
- RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_SCTP,
- [80] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT |
- RTE_PTYPE_INNER_L2_ETHER_VLAN |
- RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_ICMP,
-
- /* IPv4 --> GRE/Teredo/VXLAN --> MAC/VLAN --> IPv6 */
- [81] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT |
- RTE_PTYPE_INNER_L2_ETHER_VLAN |
- RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_FRAG,
- [82] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT |
- RTE_PTYPE_INNER_L2_ETHER_VLAN |
- RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_NONFRAG,
- [83] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT |
- RTE_PTYPE_INNER_L2_ETHER_VLAN |
- RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_UDP,
- /* [84] reserved */
- [85] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT |
- RTE_PTYPE_INNER_L2_ETHER_VLAN |
- RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_TCP,
- [86] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT |
- RTE_PTYPE_INNER_L2_ETHER_VLAN |
- RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_SCTP,
- [87] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT |
- RTE_PTYPE_INNER_L2_ETHER_VLAN |
- RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_ICMP,
-
- /* Non tunneled IPv6 */
- [88] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_L4_FRAG,
- [89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_L4_NONFRAG,
- [90] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_L4_UDP,
- /* [91] reserved */
- [92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_L4_TCP,
- [93] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_L4_SCTP,
- [94] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_L4_ICMP,
-
- /* IPv6 --> IPv4 */
- [95] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_IP |
- RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_FRAG,
- [96] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_IP |
- RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_NONFRAG,
- [97] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_IP |
- RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_UDP,
- /* [98] reserved */
- [99] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_IP |
- RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_TCP,
- [100] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_IP |
- RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_SCTP,
- [101] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_IP |
- RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_ICMP,
-
- /* IPv6 --> IPv6 */
- [102] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_IP |
- RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_FRAG,
- [103] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_IP |
- RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_NONFRAG,
- [104] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_IP |
- RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_UDP,
- /* [105] reserved */
- [106] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_IP |
- RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_TCP,
- [107] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_IP |
- RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_SCTP,
- [108] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_IP |
- RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_ICMP,
-
- /* IPv6 --> GRE/Teredo/VXLAN */
- [109] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT,
-
- /* IPv6 --> GRE/Teredo/VXLAN --> IPv4 */
- [110] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT |
- RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_FRAG,
- [111] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT |
- RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_NONFRAG,
- [112] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT |
- RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_UDP,
- /* [113] reserved */
- [114] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT |
- RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_TCP,
- [115] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT |
- RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_SCTP,
- [116] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT |
- RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_ICMP,
-
- /* IPv6 --> GRE/Teredo/VXLAN --> IPv6 */
- [117] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT |
- RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_FRAG,
- [118] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT |
- RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_NONFRAG,
- [119] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT |
- RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_UDP,
- /* [120] reserved */
- [121] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT |
- RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_TCP,
- [122] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT |
- RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_SCTP,
- [123] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT |
- RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_ICMP,
-
- /* IPv6 --> GRE/Teredo/VXLAN --> MAC */
- [124] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
-
- /* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
- [125] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
- RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_FRAG,
- [126] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
- RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_NONFRAG,
- [127] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
- RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_UDP,
- /* [128] reserved */
- [129] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
- RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_TCP,
- [130] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
- RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_SCTP,
- [131] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
- RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_ICMP,
-
- /* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
- [132] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
- RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_FRAG,
- [133] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
- RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_NONFRAG,
- [134] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
- RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_UDP,
- /* [135] reserved */
- [136] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
- RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_TCP,
- [137] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
- RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_SCTP,
- [138] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
- RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_ICMP,
-
- /* IPv6 --> GRE/Teredo/VXLAN --> MAC/VLAN */
- [139] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT |
- RTE_PTYPE_INNER_L2_ETHER_VLAN,
-
- /* IPv6 --> GRE/Teredo/VXLAN --> MAC/VLAN --> IPv4 */
- [140] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT |
- RTE_PTYPE_INNER_L2_ETHER_VLAN |
- RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_FRAG,
- [141] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT |
- RTE_PTYPE_INNER_L2_ETHER_VLAN |
- RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_NONFRAG,
- [142] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT |
- RTE_PTYPE_INNER_L2_ETHER_VLAN |
- RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_UDP,
- /* [143] reserved */
- [144] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT |
- RTE_PTYPE_INNER_L2_ETHER_VLAN |
- RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_TCP,
- [145] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT |
- RTE_PTYPE_INNER_L2_ETHER_VLAN |
- RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_SCTP,
- [146] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT |
- RTE_PTYPE_INNER_L2_ETHER_VLAN |
- RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_ICMP,
-
- /* IPv6 --> GRE/Teredo/VXLAN --> MAC/VLAN --> IPv6 */
- [147] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT |
- RTE_PTYPE_INNER_L2_ETHER_VLAN |
- RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_FRAG,
- [148] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT |
- RTE_PTYPE_INNER_L2_ETHER_VLAN |
- RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_NONFRAG,
- [149] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT |
- RTE_PTYPE_INNER_L2_ETHER_VLAN |
- RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_UDP,
- /* [150] reserved */
- [151] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT |
- RTE_PTYPE_INNER_L2_ETHER_VLAN |
- RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_TCP,
- [152] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT |
- RTE_PTYPE_INNER_L2_ETHER_VLAN |
- RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_SCTP,
- [153] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_TUNNEL_GRENAT |
- RTE_PTYPE_INNER_L2_ETHER_VLAN |
- RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
- RTE_PTYPE_INNER_L4_ICMP,
-
- /* All others reserved */
- };
-
- return ptype_table[ptype];
-}
-
-#define I40E_RX_DESC_EXT_STATUS_FLEXBH_MASK 0x03
-#define I40E_RX_DESC_EXT_STATUS_FLEXBH_FD_ID 0x01
-#define I40E_RX_DESC_EXT_STATUS_FLEXBH_FLEX 0x02
-#define I40E_RX_DESC_EXT_STATUS_FLEXBL_MASK 0x03
-#define I40E_RX_DESC_EXT_STATUS_FLEXBL_FLEX 0x01
-
-static inline uint64_t
-i40e_rxd_build_fdir(volatile union i40e_rx_desc *rxdp, struct rte_mbuf *mb)
-{
- uint64_t flags = 0;
-#ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
- uint16_t flexbh, flexbl;
-
- flexbh = (rte_le_to_cpu_32(rxdp->wb.qword2.ext_status) >>
- I40E_RX_DESC_EXT_STATUS_FLEXBH_SHIFT) &
- I40E_RX_DESC_EXT_STATUS_FLEXBH_MASK;
- flexbl = (rte_le_to_cpu_32(rxdp->wb.qword2.ext_status) >>
- I40E_RX_DESC_EXT_STATUS_FLEXBL_SHIFT) &
- I40E_RX_DESC_EXT_STATUS_FLEXBL_MASK;
-
-
- if (flexbh == I40E_RX_DESC_EXT_STATUS_FLEXBH_FD_ID) {
- mb->hash.fdir.hi =
- rte_le_to_cpu_32(rxdp->wb.qword3.hi_dword.fd_id);
- flags |= PKT_RX_FDIR_ID;
- } else if (flexbh == I40E_RX_DESC_EXT_STATUS_FLEXBH_FLEX) {
- mb->hash.fdir.hi =
- rte_le_to_cpu_32(rxdp->wb.qword3.hi_dword.flex_bytes_hi);
- flags |= PKT_RX_FDIR_FLX;
- }
- if (flexbl == I40E_RX_DESC_EXT_STATUS_FLEXBL_FLEX) {
- mb->hash.fdir.lo =
- rte_le_to_cpu_32(rxdp->wb.qword3.lo_dword.flex_bytes_lo);
- flags |= PKT_RX_FDIR_FLX;
- }
-#else
- mb->hash.fdir.hi =
- rte_le_to_cpu_32(rxdp->wb.qword0.hi_dword.fd_id);
- flags |= PKT_RX_FDIR_ID;
-#endif
- return flags;
-}
-static inline void
-i40e_txd_enable_checksum(uint64_t ol_flags,
- uint32_t *td_cmd,
- uint32_t *td_offset,
- union i40e_tx_offload tx_offload,
- uint32_t *cd_tunneling)
-{
- /* UDP tunneling packet TX checksum offload */
- if (ol_flags & PKT_TX_OUTER_IP_CKSUM) {
-
- *td_offset |= (tx_offload.outer_l2_len >> 1)
- << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
-
- if (ol_flags & PKT_TX_OUTER_IP_CKSUM)
- *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
- else if (ol_flags & PKT_TX_OUTER_IPV4)
- *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
- else if (ol_flags & PKT_TX_OUTER_IPV6)
- *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
-
- /* Now set the ctx descriptor fields */
- *cd_tunneling |= (tx_offload.outer_l3_len >> 2) <<
- I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT |
- (tx_offload.l2_len >> 1) <<
- I40E_TXD_CTX_QW0_NATLEN_SHIFT;
-
- } else
- *td_offset |= (tx_offload.l2_len >> 1)
- << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
-
- /* Enable L3 checksum offloads */
- if (ol_flags & PKT_TX_IP_CKSUM) {
- *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
- *td_offset |= (tx_offload.l3_len >> 2)
- << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
- } else if (ol_flags & PKT_TX_IPV4) {
- *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
- *td_offset |= (tx_offload.l3_len >> 2)
- << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
- } else if (ol_flags & PKT_TX_IPV6) {
- *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
- *td_offset |= (tx_offload.l3_len >> 2)
- << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
- }
-
- if (ol_flags & PKT_TX_TCP_SEG) {
- *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
- *td_offset |= (tx_offload.l4_len >> 2)
- << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
- return;
- }
-
- /* Enable L4 checksum offloads */
- switch (ol_flags & PKT_TX_L4_MASK) {
- case PKT_TX_TCP_CKSUM:
- *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
- *td_offset |= (sizeof(struct tcp_hdr) >> 2) <<
- I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
- break;
- case PKT_TX_SCTP_CKSUM:
- *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
- *td_offset |= (sizeof(struct sctp_hdr) >> 2) <<
- I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
- break;
- case PKT_TX_UDP_CKSUM:
- *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
- *td_offset |= (sizeof(struct udp_hdr) >> 2) <<
- I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
- break;
- default:
- break;
- }
-}
-
-static inline struct rte_mbuf *
-rte_rxmbuf_alloc(struct rte_mempool *mp)
-{
- struct rte_mbuf *m;
-
- m = __rte_mbuf_raw_alloc(mp);
- __rte_mbuf_sanity_check_raw(m, 0);
-
- return m;
-}
-
-/* Construct the tx flags */
-static inline uint64_t
-i40e_build_ctob(uint32_t td_cmd,
- uint32_t td_offset,
- unsigned int size,
- uint32_t td_tag)
-{
- return rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DATA |
- ((uint64_t)td_cmd << I40E_TXD_QW1_CMD_SHIFT) |
- ((uint64_t)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
- ((uint64_t)size << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
- ((uint64_t)td_tag << I40E_TXD_QW1_L2TAG1_SHIFT));
-}
-
-static inline int
-i40e_xmit_cleanup(struct i40e_tx_queue *txq)
-{
- struct i40e_tx_entry *sw_ring = txq->sw_ring;
- volatile struct i40e_tx_desc *txd = txq->tx_ring;
- uint16_t last_desc_cleaned = txq->last_desc_cleaned;
- uint16_t nb_tx_desc = txq->nb_tx_desc;
- uint16_t desc_to_clean_to;
- uint16_t nb_tx_to_clean;
-
- desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->tx_rs_thresh);
- if (desc_to_clean_to >= nb_tx_desc)
- desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
-
- desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
- if ((txd[desc_to_clean_to].cmd_type_offset_bsz &
- rte_cpu_to_le_64(I40E_TXD_QW1_DTYPE_MASK)) !=
- rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE)) {
- PMD_TX_FREE_LOG(DEBUG, "TX descriptor %4u is not done "
- "(port=%d queue=%d)", desc_to_clean_to,
- txq->port_id, txq->queue_id);
- return -1;
- }
-
- if (last_desc_cleaned > desc_to_clean_to)
- nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
- desc_to_clean_to);
- else
- nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
- last_desc_cleaned);
-
- txd[desc_to_clean_to].cmd_type_offset_bsz = 0;
-
- txq->last_desc_cleaned = desc_to_clean_to;
- txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + nb_tx_to_clean);
-
- return 0;
-}
-
-static inline int
-#ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
-check_rx_burst_bulk_alloc_preconditions(struct i40e_rx_queue *rxq)
-#else
-check_rx_burst_bulk_alloc_preconditions(__rte_unused struct i40e_rx_queue *rxq)
-#endif
-{
- int ret = 0;
-
-#ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
- if (!(rxq->rx_free_thresh >= RTE_PMD_I40E_RX_MAX_BURST)) {
- PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
- "rxq->rx_free_thresh=%d, "
- "RTE_PMD_I40E_RX_MAX_BURST=%d",
- rxq->rx_free_thresh, RTE_PMD_I40E_RX_MAX_BURST);
- ret = -EINVAL;
- } else if (!(rxq->rx_free_thresh < rxq->nb_rx_desc)) {
- PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
- "rxq->rx_free_thresh=%d, "
- "rxq->nb_rx_desc=%d",
- rxq->rx_free_thresh, rxq->nb_rx_desc);
- ret = -EINVAL;
- } else if (rxq->nb_rx_desc % rxq->rx_free_thresh != 0) {
- PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
- "rxq->nb_rx_desc=%d, "
- "rxq->rx_free_thresh=%d",
- rxq->nb_rx_desc, rxq->rx_free_thresh);
- ret = -EINVAL;
- } else if (!(rxq->nb_rx_desc < (I40E_MAX_RING_DESC -
- RTE_PMD_I40E_RX_MAX_BURST))) {
- PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
- "rxq->nb_rx_desc=%d, "
- "I40E_MAX_RING_DESC=%d, "
- "RTE_PMD_I40E_RX_MAX_BURST=%d",
- rxq->nb_rx_desc, I40E_MAX_RING_DESC,
- RTE_PMD_I40E_RX_MAX_BURST);
- ret = -EINVAL;
- }
-#else
- ret = -EINVAL;
-#endif
-
- return ret;
-}
-
-#ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
-#define I40E_LOOK_AHEAD 8
-#if (I40E_LOOK_AHEAD != 8)
-#error "PMD I40E: I40E_LOOK_AHEAD must be 8\n"
-#endif
-static inline int
-i40e_rx_scan_hw_ring(struct i40e_rx_queue *rxq)
-{
- volatile union i40e_rx_desc *rxdp;
- struct i40e_rx_entry *rxep;
- struct rte_mbuf *mb;
- uint16_t pkt_len;
- uint64_t qword1;
- uint32_t rx_status;
- int32_t s[I40E_LOOK_AHEAD], nb_dd;
- int32_t i, j, nb_rx = 0;
- uint64_t pkt_flags;
-
- rxdp = &rxq->rx_ring[rxq->rx_tail];
- rxep = &rxq->sw_ring[rxq->rx_tail];
-
- qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
- rx_status = (qword1 & I40E_RXD_QW1_STATUS_MASK) >>
- I40E_RXD_QW1_STATUS_SHIFT;
-
- /* Make sure there is at least 1 packet to receive */
- if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
- return 0;
-
- /**
- * Scan LOOK_AHEAD descriptors at a time to determine which
- * descriptors reference packets that are ready to be received.
- */
- for (i = 0; i < RTE_PMD_I40E_RX_MAX_BURST; i+=I40E_LOOK_AHEAD,
- rxdp += I40E_LOOK_AHEAD, rxep += I40E_LOOK_AHEAD) {
- /* Read desc statuses backwards to avoid race condition */
- for (j = I40E_LOOK_AHEAD - 1; j >= 0; j--) {
- qword1 = rte_le_to_cpu_64(\
- rxdp[j].wb.qword1.status_error_len);
- s[j] = (qword1 & I40E_RXD_QW1_STATUS_MASK) >>
- I40E_RXD_QW1_STATUS_SHIFT;
- }
-
- /* Compute how many status bits were set */
- for (j = 0, nb_dd = 0; j < I40E_LOOK_AHEAD; j++)
- nb_dd += s[j] & (1 << I40E_RX_DESC_STATUS_DD_SHIFT);
-
- nb_rx += nb_dd;
-
- /* Translate descriptor info to mbuf parameters */
- for (j = 0; j < nb_dd; j++) {
- mb = rxep[j].mbuf;
- qword1 = rte_le_to_cpu_64(\
- rxdp[j].wb.qword1.status_error_len);
- pkt_len = ((qword1 & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
- I40E_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
- mb->data_len = pkt_len;
- mb->pkt_len = pkt_len;
- mb->ol_flags = 0;
- i40e_rxd_to_vlan_tci(mb, &rxdp[j]);
- pkt_flags = i40e_rxd_status_to_pkt_flags(qword1);
- pkt_flags |= i40e_rxd_error_to_pkt_flags(qword1);
- mb->packet_type =
- i40e_rxd_pkt_type_mapping((uint8_t)((qword1 &
- I40E_RXD_QW1_PTYPE_MASK) >>
- I40E_RXD_QW1_PTYPE_SHIFT));
- if (pkt_flags & PKT_RX_RSS_HASH)
- mb->hash.rss = rte_le_to_cpu_32(\
- rxdp[j].wb.qword0.hi_dword.rss);
- if (pkt_flags & PKT_RX_FDIR)
- pkt_flags |= i40e_rxd_build_fdir(&rxdp[j], mb);
-
-#ifdef RTE_LIBRTE_IEEE1588
- pkt_flags |= i40e_get_iee15888_flags(mb, qword1);
-#endif
- mb->ol_flags |= pkt_flags;
-
- }
-
- for (j = 0; j < I40E_LOOK_AHEAD; j++)
- rxq->rx_stage[i + j] = rxep[j].mbuf;
-
- if (nb_dd != I40E_LOOK_AHEAD)
- break;
- }
-
- /* Clear software ring entries */
- for (i = 0; i < nb_rx; i++)
- rxq->sw_ring[rxq->rx_tail + i].mbuf = NULL;
-
- return nb_rx;
-}
-
-static inline uint16_t
-i40e_rx_fill_from_stage(struct i40e_rx_queue *rxq,
- struct rte_mbuf **rx_pkts,
- uint16_t nb_pkts)
-{
- uint16_t i;
- struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
-
- nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
-
- for (i = 0; i < nb_pkts; i++)
- rx_pkts[i] = stage[i];
-
- rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
- rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
-
- return nb_pkts;
-}
-
-static inline int
-i40e_rx_alloc_bufs(struct i40e_rx_queue *rxq)
-{
- volatile union i40e_rx_desc *rxdp;
- struct i40e_rx_entry *rxep;
- struct rte_mbuf *mb;
- uint16_t alloc_idx, i;
- uint64_t dma_addr;
- int diag;
-
- /* Allocate buffers in bulk */
- alloc_idx = (uint16_t)(rxq->rx_free_trigger -
- (rxq->rx_free_thresh - 1));
- rxep = &(rxq->sw_ring[alloc_idx]);
- diag = rte_mempool_get_bulk(rxq->mp, (void *)rxep,
- rxq->rx_free_thresh);
- if (unlikely(diag != 0)) {
- PMD_DRV_LOG(ERR, "Failed to get mbufs in bulk");
- return -ENOMEM;
- }
-
- rxdp = &rxq->rx_ring[alloc_idx];
- for (i = 0; i < rxq->rx_free_thresh; i++) {
- if (likely(i < (rxq->rx_free_thresh - 1)))
- /* Prefetch next mbuf */
- rte_prefetch0(rxep[i + 1].mbuf);
-
- mb = rxep[i].mbuf;
- rte_mbuf_refcnt_set(mb, 1);
- mb->next = NULL;
- mb->data_off = RTE_PKTMBUF_HEADROOM;
- mb->nb_segs = 1;
- mb->port = rxq->port_id;
- dma_addr = rte_cpu_to_le_64(\
- RTE_MBUF_DATA_DMA_ADDR_DEFAULT(mb));
- rxdp[i].read.hdr_addr = 0;
- rxdp[i].read.pkt_addr = dma_addr;
- }
-
- /* Update rx tail regsiter */
- rte_wmb();
- I40E_PCI_REG_WRITE(rxq->qrx_tail, rxq->rx_free_trigger);
-
- rxq->rx_free_trigger =
- (uint16_t)(rxq->rx_free_trigger + rxq->rx_free_thresh);
- if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
- rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
-
- return 0;
-}
-
-static inline uint16_t
-rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
-{
- struct i40e_rx_queue *rxq = (struct i40e_rx_queue *)rx_queue;
- uint16_t nb_rx = 0;
-
- if (!nb_pkts)
- return 0;
-
- if (rxq->rx_nb_avail)
- return i40e_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
-
- nb_rx = (uint16_t)i40e_rx_scan_hw_ring(rxq);
- rxq->rx_next_avail = 0;
- rxq->rx_nb_avail = nb_rx;
- rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx);
-
- if (rxq->rx_tail > rxq->rx_free_trigger) {
- if (i40e_rx_alloc_bufs(rxq) != 0) {
- uint16_t i, j;
-
- PMD_RX_LOG(DEBUG, "Rx mbuf alloc failed for "
- "port_id=%u, queue_id=%u",
- rxq->port_id, rxq->queue_id);
- rxq->rx_nb_avail = 0;
- rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx);
- for (i = 0, j = rxq->rx_tail; i < nb_rx; i++, j++)
- rxq->sw_ring[j].mbuf = rxq->rx_stage[i];
-
- return 0;
- }
- }
-
- if (rxq->rx_tail >= rxq->nb_rx_desc)
- rxq->rx_tail = 0;
-
- if (rxq->rx_nb_avail)
- return i40e_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
-
- return 0;
-}
-
-static uint16_t
-i40e_recv_pkts_bulk_alloc(void *rx_queue,
- struct rte_mbuf **rx_pkts,
- uint16_t nb_pkts)
-{
- uint16_t nb_rx = 0, n, count;
-
- if (unlikely(nb_pkts == 0))
- return 0;
-
- if (likely(nb_pkts <= RTE_PMD_I40E_RX_MAX_BURST))
- return rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
-
- while (nb_pkts) {
- n = RTE_MIN(nb_pkts, RTE_PMD_I40E_RX_MAX_BURST);
- count = rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
- nb_rx = (uint16_t)(nb_rx + count);
- nb_pkts = (uint16_t)(nb_pkts - count);
- if (count < n)
- break;
- }
-
- return nb_rx;
-}
-#endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
-
-uint16_t
-i40e_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
-{
- struct i40e_rx_queue *rxq;
- volatile union i40e_rx_desc *rx_ring;
- volatile union i40e_rx_desc *rxdp;
- union i40e_rx_desc rxd;
- struct i40e_rx_entry *sw_ring;
- struct i40e_rx_entry *rxe;
- struct rte_mbuf *rxm;
- struct rte_mbuf *nmb;
- uint16_t nb_rx;
- uint32_t rx_status;
- uint64_t qword1;
- uint16_t rx_packet_len;
- uint16_t rx_id, nb_hold;
- uint64_t dma_addr;
- uint64_t pkt_flags;
-
- nb_rx = 0;
- nb_hold = 0;
- rxq = rx_queue;
- rx_id = rxq->rx_tail;
- rx_ring = rxq->rx_ring;
- sw_ring = rxq->sw_ring;
-
- while (nb_rx < nb_pkts) {
- rxdp = &rx_ring[rx_id];
- qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
- rx_status = (qword1 & I40E_RXD_QW1_STATUS_MASK)
- >> I40E_RXD_QW1_STATUS_SHIFT;
-
- /* Check the DD bit first */
- if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
- break;
-
- nmb = rte_rxmbuf_alloc(rxq->mp);
- if (unlikely(!nmb))
- break;
- rxd = *rxdp;
-
- nb_hold++;
- rxe = &sw_ring[rx_id];
- rx_id++;
- if (unlikely(rx_id == rxq->nb_rx_desc))
- rx_id = 0;
-
- /* Prefetch next mbuf */
- rte_prefetch0(sw_ring[rx_id].mbuf);
-
- /**
- * When next RX descriptor is on a cache line boundary,
- * prefetch the next 4 RX descriptors and next 8 pointers
- * to mbufs.
- */
- if ((rx_id & 0x3) == 0) {
- rte_prefetch0(&rx_ring[rx_id]);
- rte_prefetch0(&sw_ring[rx_id]);
- }
- rxm = rxe->mbuf;
- rxe->mbuf = nmb;
- dma_addr =
- rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(nmb));
- rxdp->read.hdr_addr = 0;
- rxdp->read.pkt_addr = dma_addr;
-
- rx_packet_len = ((qword1 & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
- I40E_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
-
- rxm->data_off = RTE_PKTMBUF_HEADROOM;
- rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
- rxm->nb_segs = 1;
- rxm->next = NULL;
- rxm->pkt_len = rx_packet_len;
- rxm->data_len = rx_packet_len;
- rxm->port = rxq->port_id;
- rxm->ol_flags = 0;
- i40e_rxd_to_vlan_tci(rxm, &rxd);
- pkt_flags = i40e_rxd_status_to_pkt_flags(qword1);
- pkt_flags |= i40e_rxd_error_to_pkt_flags(qword1);
- rxm->packet_type =
- i40e_rxd_pkt_type_mapping((uint8_t)((qword1 &
- I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT));
- if (pkt_flags & PKT_RX_RSS_HASH)
- rxm->hash.rss =
- rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
- if (pkt_flags & PKT_RX_FDIR)
- pkt_flags |= i40e_rxd_build_fdir(&rxd, rxm);
-
-#ifdef RTE_LIBRTE_IEEE1588
- pkt_flags |= i40e_get_iee15888_flags(rxm, qword1);
-#endif
- rxm->ol_flags |= pkt_flags;
-
- rx_pkts[nb_rx++] = rxm;
- }
- rxq->rx_tail = rx_id;
-
- /**
- * If the number of free RX descriptors is greater than the RX free
- * threshold of the queue, advance the receive tail register of queue.
- * Update that register with the value of the last processed RX
- * descriptor minus 1.
- */
- nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
- if (nb_hold > rxq->rx_free_thresh) {
- rx_id = (uint16_t) ((rx_id == 0) ?
- (rxq->nb_rx_desc - 1) : (rx_id - 1));
- I40E_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
- nb_hold = 0;
- }
- rxq->nb_rx_hold = nb_hold;
-
- return nb_rx;
-}
-
-uint16_t
-i40e_recv_scattered_pkts(void *rx_queue,
- struct rte_mbuf **rx_pkts,
- uint16_t nb_pkts)
-{
- struct i40e_rx_queue *rxq = rx_queue;
- volatile union i40e_rx_desc *rx_ring = rxq->rx_ring;
- volatile union i40e_rx_desc *rxdp;
- union i40e_rx_desc rxd;
- struct i40e_rx_entry *sw_ring = rxq->sw_ring;
- struct i40e_rx_entry *rxe;
- struct rte_mbuf *first_seg = rxq->pkt_first_seg;
- struct rte_mbuf *last_seg = rxq->pkt_last_seg;
- struct rte_mbuf *nmb, *rxm;
- uint16_t rx_id = rxq->rx_tail;
- uint16_t nb_rx = 0, nb_hold = 0, rx_packet_len;
- uint32_t rx_status;
- uint64_t qword1;
- uint64_t dma_addr;
- uint64_t pkt_flags;
-
- while (nb_rx < nb_pkts) {
- rxdp = &rx_ring[rx_id];
- qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
- rx_status = (qword1 & I40E_RXD_QW1_STATUS_MASK) >>
- I40E_RXD_QW1_STATUS_SHIFT;
-
- /* Check the DD bit */
- if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
- break;
-
- nmb = rte_rxmbuf_alloc(rxq->mp);
- if (unlikely(!nmb))
- break;
- rxd = *rxdp;
- nb_hold++;
- rxe = &sw_ring[rx_id];
- rx_id++;
- if (rx_id == rxq->nb_rx_desc)
- rx_id = 0;
-
- /* Prefetch next mbuf */
- rte_prefetch0(sw_ring[rx_id].mbuf);
-
- /**
- * When next RX descriptor is on a cache line boundary,
- * prefetch the next 4 RX descriptors and next 8 pointers
- * to mbufs.
- */
- if ((rx_id & 0x3) == 0) {
- rte_prefetch0(&rx_ring[rx_id]);
- rte_prefetch0(&sw_ring[rx_id]);
- }
-
- rxm = rxe->mbuf;
- rxe->mbuf = nmb;
- dma_addr =
- rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(nmb));
-
- /* Set data buffer address and data length of the mbuf */
- rxdp->read.hdr_addr = 0;
- rxdp->read.pkt_addr = dma_addr;
- rx_packet_len = (qword1 & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
- I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
- rxm->data_len = rx_packet_len;
- rxm->data_off = RTE_PKTMBUF_HEADROOM;
-
- /**
- * If this is the first buffer of the received packet, set the
- * pointer to the first mbuf of the packet and initialize its
- * context. Otherwise, update the total length and the number
- * of segments of the current scattered packet, and update the
- * pointer to the last mbuf of the current packet.
- */
- if (!first_seg) {
- first_seg = rxm;
- first_seg->nb_segs = 1;
- first_seg->pkt_len = rx_packet_len;
- } else {
- first_seg->pkt_len =
- (uint16_t)(first_seg->pkt_len +
- rx_packet_len);
- first_seg->nb_segs++;
- last_seg->next = rxm;
- }
-
- /**
- * If this is not the last buffer of the received packet,
- * update the pointer to the last mbuf of the current scattered
- * packet and continue to parse the RX ring.
- */
- if (!(rx_status & (1 << I40E_RX_DESC_STATUS_EOF_SHIFT))) {
- last_seg = rxm;
- continue;
- }
-
- /**
- * This is the last buffer of the received packet. If the CRC
- * is not stripped by the hardware:
- * - Subtract the CRC length from the total packet length.
- * - If the last buffer only contains the whole CRC or a part
- * of it, free the mbuf associated to the last buffer. If part
- * of the CRC is also contained in the previous mbuf, subtract
- * the length of that CRC part from the data length of the
- * previous mbuf.
- */
- rxm->next = NULL;
- if (unlikely(rxq->crc_len > 0)) {
- first_seg->pkt_len -= ETHER_CRC_LEN;
- if (rx_packet_len <= ETHER_CRC_LEN) {
- rte_pktmbuf_free_seg(rxm);
- first_seg->nb_segs--;
- last_seg->data_len =
- (uint16_t)(last_seg->data_len -
- (ETHER_CRC_LEN - rx_packet_len));
- last_seg->next = NULL;
- } else
- rxm->data_len = (uint16_t)(rx_packet_len -
- ETHER_CRC_LEN);
- }
-
- first_seg->port = rxq->port_id;
- first_seg->ol_flags = 0;
- i40e_rxd_to_vlan_tci(first_seg, &rxd);
- pkt_flags = i40e_rxd_status_to_pkt_flags(qword1);
- pkt_flags |= i40e_rxd_error_to_pkt_flags(qword1);
- first_seg->packet_type =
- i40e_rxd_pkt_type_mapping((uint8_t)((qword1 &
- I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT));
- if (pkt_flags & PKT_RX_RSS_HASH)
- rxm->hash.rss =
- rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
- if (pkt_flags & PKT_RX_FDIR)
- pkt_flags |= i40e_rxd_build_fdir(&rxd, rxm);
-
-#ifdef RTE_LIBRTE_IEEE1588
- pkt_flags |= i40e_get_iee15888_flags(first_seg, qword1);
-#endif
- first_seg->ol_flags |= pkt_flags;
-
- /* Prefetch data of first segment, if configured to do so. */
- rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
- first_seg->data_off));
- rx_pkts[nb_rx++] = first_seg;
- first_seg = NULL;
- }
-
- /* Record index of the next RX descriptor to probe. */
- rxq->rx_tail = rx_id;
- rxq->pkt_first_seg = first_seg;
- rxq->pkt_last_seg = last_seg;
-
- /**
- * If the number of free RX descriptors is greater than the RX free
- * threshold of the queue, advance the Receive Descriptor Tail (RDT)
- * register. Update the RDT with the value of the last processed RX
- * descriptor minus 1, to guarantee that the RDT register is never
- * equal to the RDH register, which creates a "full" ring situtation
- * from the hardware point of view.
- */
- nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
- if (nb_hold > rxq->rx_free_thresh) {
- rx_id = (uint16_t)(rx_id == 0 ?
- (rxq->nb_rx_desc - 1) : (rx_id - 1));
- I40E_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
- nb_hold = 0;
- }
- rxq->nb_rx_hold = nb_hold;
-
- return nb_rx;
-}
-
-/* Check if the context descriptor is needed for TX offloading */
-static inline uint16_t
-i40e_calc_context_desc(uint64_t flags)
-{
- static uint64_t mask = PKT_TX_OUTER_IP_CKSUM |
- PKT_TX_TCP_SEG |
- PKT_TX_QINQ_PKT;
-
-#ifdef RTE_LIBRTE_IEEE1588
- mask |= PKT_TX_IEEE1588_TMST;
-#endif
-
- return ((flags & mask) ? 1 : 0);
-}
-
-/* set i40e TSO context descriptor */
-static inline uint64_t
-i40e_set_tso_ctx(struct rte_mbuf *mbuf, union i40e_tx_offload tx_offload)
-{
- uint64_t ctx_desc = 0;
- uint32_t cd_cmd, hdr_len, cd_tso_len;
-
- if (!tx_offload.l4_len) {
- PMD_DRV_LOG(DEBUG, "L4 length set to 0");
- return ctx_desc;
- }
-
- /**
- * in case of tunneling packet, the outer_l2_len and
- * outer_l3_len must be 0.
- */
- hdr_len = tx_offload.outer_l2_len +
- tx_offload.outer_l3_len +
- tx_offload.l2_len +
- tx_offload.l3_len +
- tx_offload.l4_len;
-
- cd_cmd = I40E_TX_CTX_DESC_TSO;
- cd_tso_len = mbuf->pkt_len - hdr_len;
- ctx_desc |= ((uint64_t)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
- ((uint64_t)cd_tso_len <<
- I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
- ((uint64_t)mbuf->tso_segsz <<
- I40E_TXD_CTX_QW1_MSS_SHIFT);
-
- return ctx_desc;
-}
-
-uint16_t
-i40e_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
-{
- struct i40e_tx_queue *txq;
- struct i40e_tx_entry *sw_ring;
- struct i40e_tx_entry *txe, *txn;
- volatile struct i40e_tx_desc *txd;
- volatile struct i40e_tx_desc *txr;
- struct rte_mbuf *tx_pkt;
- struct rte_mbuf *m_seg;
- uint32_t cd_tunneling_params;
- uint16_t tx_id;
- uint16_t nb_tx;
- uint32_t td_cmd;
- uint32_t td_offset;
- uint32_t tx_flags;
- uint32_t td_tag;
- uint64_t ol_flags;
- uint16_t nb_used;
- uint16_t nb_ctx;
- uint16_t tx_last;
- uint16_t slen;
- uint64_t buf_dma_addr;
- union i40e_tx_offload tx_offload = {0};
-
- txq = tx_queue;
- sw_ring = txq->sw_ring;
- txr = txq->tx_ring;
- tx_id = txq->tx_tail;
- txe = &sw_ring[tx_id];
-
- /* Check if the descriptor ring needs to be cleaned. */
- if (txq->nb_tx_free < txq->tx_free_thresh)
- i40e_xmit_cleanup(txq);
-
- for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
- td_cmd = 0;
- td_tag = 0;
- td_offset = 0;
- tx_flags = 0;
-
- tx_pkt = *tx_pkts++;
- RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
-
- ol_flags = tx_pkt->ol_flags;
- tx_offload.l2_len = tx_pkt->l2_len;
- tx_offload.l3_len = tx_pkt->l3_len;
- tx_offload.outer_l2_len = tx_pkt->outer_l2_len;
- tx_offload.outer_l3_len = tx_pkt->outer_l3_len;
- tx_offload.l4_len = tx_pkt->l4_len;
- tx_offload.tso_segsz = tx_pkt->tso_segsz;
-
- /* Calculate the number of context descriptors needed. */
- nb_ctx = i40e_calc_context_desc(ol_flags);
-
- /**
- * The number of descriptors that must be allocated for
- * a packet equals to the number of the segments of that
- * packet plus 1 context descriptor if needed.
- */
- nb_used = (uint16_t)(tx_pkt->nb_segs + nb_ctx);
- tx_last = (uint16_t)(tx_id + nb_used - 1);
-
- /* Circular ring */
- if (tx_last >= txq->nb_tx_desc)
- tx_last = (uint16_t)(tx_last - txq->nb_tx_desc);
-
- if (nb_used > txq->nb_tx_free) {
- if (i40e_xmit_cleanup(txq) != 0) {
- if (nb_tx == 0)
- return 0;
- goto end_of_tx;
- }
- if (unlikely(nb_used > txq->tx_rs_thresh)) {
- while (nb_used > txq->nb_tx_free) {
- if (i40e_xmit_cleanup(txq) != 0) {
- if (nb_tx == 0)
- return 0;
- goto end_of_tx;
- }
- }
- }
- }
-
- /* Descriptor based VLAN insertion */
- if (ol_flags & (PKT_TX_VLAN_PKT | PKT_TX_QINQ_PKT)) {
- tx_flags |= tx_pkt->vlan_tci <<
- I40E_TX_FLAG_L2TAG1_SHIFT;
- tx_flags |= I40E_TX_FLAG_INSERT_VLAN;
- td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
- td_tag = (tx_flags & I40E_TX_FLAG_L2TAG1_MASK) >>
- I40E_TX_FLAG_L2TAG1_SHIFT;
- }
-
- /* Always enable CRC offload insertion */
- td_cmd |= I40E_TX_DESC_CMD_ICRC;
-
- /* Enable checksum offloading */
- cd_tunneling_params = 0;
- if (ol_flags & I40E_TX_CKSUM_OFFLOAD_MASK) {
- i40e_txd_enable_checksum(ol_flags, &td_cmd, &td_offset,
- tx_offload, &cd_tunneling_params);
- }
-
- if (nb_ctx) {
- /* Setup TX context descriptor if required */
- volatile struct i40e_tx_context_desc *ctx_txd =
- (volatile struct i40e_tx_context_desc *)\
- &txr[tx_id];
- uint16_t cd_l2tag2 = 0;
- uint64_t cd_type_cmd_tso_mss =
- I40E_TX_DESC_DTYPE_CONTEXT;
-
- txn = &sw_ring[txe->next_id];
- RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
- if (txe->mbuf != NULL) {
- rte_pktmbuf_free_seg(txe->mbuf);
- txe->mbuf = NULL;
- }
-
- /* TSO enabled means no timestamp */
- if (ol_flags & PKT_TX_TCP_SEG)
- cd_type_cmd_tso_mss |=
- i40e_set_tso_ctx(tx_pkt, tx_offload);
- else {
-#ifdef RTE_LIBRTE_IEEE1588
- if (ol_flags & PKT_TX_IEEE1588_TMST)
- cd_type_cmd_tso_mss |=
- ((uint64_t)I40E_TX_CTX_DESC_TSYN <<
- I40E_TXD_CTX_QW1_CMD_SHIFT);
-#endif
- }
-
- ctx_txd->tunneling_params =
- rte_cpu_to_le_32(cd_tunneling_params);
- if (ol_flags & PKT_TX_QINQ_PKT) {
- cd_l2tag2 = tx_pkt->vlan_tci_outer;
- cd_type_cmd_tso_mss |=
- ((uint64_t)I40E_TX_CTX_DESC_IL2TAG2 <<
- I40E_TXD_CTX_QW1_CMD_SHIFT);
- }
- ctx_txd->l2tag2 = rte_cpu_to_le_16(cd_l2tag2);
- ctx_txd->type_cmd_tso_mss =
- rte_cpu_to_le_64(cd_type_cmd_tso_mss);
-
- PMD_TX_LOG(DEBUG, "mbuf: %p, TCD[%u]:\n"
- "tunneling_params: %#x;\n"
- "l2tag2: %#hx;\n"
- "rsvd: %#hx;\n"
- "type_cmd_tso_mss: %#"PRIx64";\n",
- tx_pkt, tx_id,
- ctx_txd->tunneling_params,
- ctx_txd->l2tag2,
- ctx_txd->rsvd,
- ctx_txd->type_cmd_tso_mss);
-
- txe->last_id = tx_last;
- tx_id = txe->next_id;
- txe = txn;
- }
-
- m_seg = tx_pkt;
- do {
- txd = &txr[tx_id];
- txn = &sw_ring[txe->next_id];
-
- if (txe->mbuf)
- rte_pktmbuf_free_seg(txe->mbuf);
- txe->mbuf = m_seg;
-
- /* Setup TX Descriptor */
- slen = m_seg->data_len;
- buf_dma_addr = RTE_MBUF_DATA_DMA_ADDR(m_seg);
-
- PMD_TX_LOG(DEBUG, "mbuf: %p, TDD[%u]:\n"
- "buf_dma_addr: %#"PRIx64";\n"
- "td_cmd: %#x;\n"
- "td_offset: %#x;\n"
- "td_len: %u;\n"
- "td_tag: %#x;\n",
- tx_pkt, tx_id, buf_dma_addr,
- td_cmd, td_offset, slen, td_tag);
-
- txd->buffer_addr = rte_cpu_to_le_64(buf_dma_addr);
- txd->cmd_type_offset_bsz = i40e_build_ctob(td_cmd,
- td_offset, slen, td_tag);
- txe->last_id = tx_last;
- tx_id = txe->next_id;
- txe = txn;
- m_seg = m_seg->next;
- } while (m_seg != NULL);
-
- /* The last packet data descriptor needs End Of Packet (EOP) */
- td_cmd |= I40E_TX_DESC_CMD_EOP;
- txq->nb_tx_used = (uint16_t)(txq->nb_tx_used + nb_used);
- txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_used);
-
- if (txq->nb_tx_used >= txq->tx_rs_thresh) {
- PMD_TX_FREE_LOG(DEBUG,
- "Setting RS bit on TXD id="
- "%4u (port=%d queue=%d)",
- tx_last, txq->port_id, txq->queue_id);
-
- td_cmd |= I40E_TX_DESC_CMD_RS;
-
- /* Update txq RS bit counters */
- txq->nb_tx_used = 0;
- }
-
- txd->cmd_type_offset_bsz |=
- rte_cpu_to_le_64(((uint64_t)td_cmd) <<
- I40E_TXD_QW1_CMD_SHIFT);
- }
-
-end_of_tx:
- rte_wmb();
-
- PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
- (unsigned) txq->port_id, (unsigned) txq->queue_id,
- (unsigned) tx_id, (unsigned) nb_tx);
-
- I40E_PCI_REG_WRITE(txq->qtx_tail, tx_id);
- txq->tx_tail = tx_id;
-
- return nb_tx;
-}
-
-static inline int __attribute__((always_inline))
-i40e_tx_free_bufs(struct i40e_tx_queue *txq)
-{
- struct i40e_tx_entry *txep;
- uint16_t i;
-
- if ((txq->tx_ring[txq->tx_next_dd].cmd_type_offset_bsz &
- rte_cpu_to_le_64(I40E_TXD_QW1_DTYPE_MASK)) !=
- rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE))
- return 0;
-
- txep = &(txq->sw_ring[txq->tx_next_dd - (txq->tx_rs_thresh - 1)]);
-
- for (i = 0; i < txq->tx_rs_thresh; i++)
- rte_prefetch0((txep + i)->mbuf);
-
- if (!(txq->txq_flags & (uint32_t)ETH_TXQ_FLAGS_NOREFCOUNT)) {
- for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
- rte_mempool_put(txep->mbuf->pool, txep->mbuf);
- txep->mbuf = NULL;
- }
- } else {
- for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
- rte_pktmbuf_free_seg(txep->mbuf);
- txep->mbuf = NULL;
- }
- }
-
- txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_rs_thresh);
- txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_rs_thresh);
- if (txq->tx_next_dd >= txq->nb_tx_desc)
- txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
-
- return txq->tx_rs_thresh;
-}
-
-/* Populate 4 descriptors with data from 4 mbufs */
-static inline void
-tx4(volatile struct i40e_tx_desc *txdp, struct rte_mbuf **pkts)
-{
- uint64_t dma_addr;
- uint32_t i;
-
- for (i = 0; i < 4; i++, txdp++, pkts++) {
- dma_addr = RTE_MBUF_DATA_DMA_ADDR(*pkts);
- txdp->buffer_addr = rte_cpu_to_le_64(dma_addr);
- txdp->cmd_type_offset_bsz =
- i40e_build_ctob((uint32_t)I40E_TD_CMD, 0,
- (*pkts)->data_len, 0);
- }
-}
-
-/* Populate 1 descriptor with data from 1 mbuf */
-static inline void
-tx1(volatile struct i40e_tx_desc *txdp, struct rte_mbuf **pkts)
-{
- uint64_t dma_addr;
-
- dma_addr = RTE_MBUF_DATA_DMA_ADDR(*pkts);
- txdp->buffer_addr = rte_cpu_to_le_64(dma_addr);
- txdp->cmd_type_offset_bsz =
- i40e_build_ctob((uint32_t)I40E_TD_CMD, 0,
- (*pkts)->data_len, 0);
-}
-
-/* Fill hardware descriptor ring with mbuf data */
-static inline void
-i40e_tx_fill_hw_ring(struct i40e_tx_queue *txq,
- struct rte_mbuf **pkts,
- uint16_t nb_pkts)
-{
- volatile struct i40e_tx_desc *txdp = &(txq->tx_ring[txq->tx_tail]);
- struct i40e_tx_entry *txep = &(txq->sw_ring[txq->tx_tail]);
- const int N_PER_LOOP = 4;
- const int N_PER_LOOP_MASK = N_PER_LOOP - 1;
- int mainpart, leftover;
- int i, j;
-
- mainpart = (nb_pkts & ((uint32_t) ~N_PER_LOOP_MASK));
- leftover = (nb_pkts & ((uint32_t) N_PER_LOOP_MASK));
- for (i = 0; i < mainpart; i += N_PER_LOOP) {
- for (j = 0; j < N_PER_LOOP; ++j) {
- (txep + i + j)->mbuf = *(pkts + i + j);
- }
- tx4(txdp + i, pkts + i);
- }
- if (unlikely(leftover > 0)) {
- for (i = 0; i < leftover; ++i) {
- (txep + mainpart + i)->mbuf = *(pkts + mainpart + i);
- tx1(txdp + mainpart + i, pkts + mainpart + i);
- }
- }
-}
-
-static inline uint16_t
-tx_xmit_pkts(struct i40e_tx_queue *txq,
- struct rte_mbuf **tx_pkts,
- uint16_t nb_pkts)
-{
- volatile struct i40e_tx_desc *txr = txq->tx_ring;
- uint16_t n = 0;
-
- /**
- * Begin scanning the H/W ring for done descriptors when the number
- * of available descriptors drops below tx_free_thresh. For each done
- * descriptor, free the associated buffer.
- */
- if (txq->nb_tx_free < txq->tx_free_thresh)
- i40e_tx_free_bufs(txq);
-
- /* Use available descriptor only */
- nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
- if (unlikely(!nb_pkts))
- return 0;
-
- txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
- if ((txq->tx_tail + nb_pkts) > txq->nb_tx_desc) {
- n = (uint16_t)(txq->nb_tx_desc - txq->tx_tail);
- i40e_tx_fill_hw_ring(txq, tx_pkts, n);
- txr[txq->tx_next_rs].cmd_type_offset_bsz |=
- rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) <<
- I40E_TXD_QW1_CMD_SHIFT);
- txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
- txq->tx_tail = 0;
- }
-
- /* Fill hardware descriptor ring with mbuf data */
- i40e_tx_fill_hw_ring(txq, tx_pkts + n, (uint16_t)(nb_pkts - n));
- txq->tx_tail = (uint16_t)(txq->tx_tail + (nb_pkts - n));
-
- /* Determin if RS bit needs to be set */
- if (txq->tx_tail > txq->tx_next_rs) {
- txr[txq->tx_next_rs].cmd_type_offset_bsz |=
- rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) <<
- I40E_TXD_QW1_CMD_SHIFT);
- txq->tx_next_rs =
- (uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
- if (txq->tx_next_rs >= txq->nb_tx_desc)
- txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
- }
-
- if (txq->tx_tail >= txq->nb_tx_desc)
- txq->tx_tail = 0;
-
- /* Update the tx tail register */
- rte_wmb();
- I40E_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
-
- return nb_pkts;
-}
-
-static uint16_t
-i40e_xmit_pkts_simple(void *tx_queue,
- struct rte_mbuf **tx_pkts,
- uint16_t nb_pkts)
-{
- uint16_t nb_tx = 0;
-
- if (likely(nb_pkts <= I40E_TX_MAX_BURST))
- return tx_xmit_pkts((struct i40e_tx_queue *)tx_queue,
- tx_pkts, nb_pkts);
-
- while (nb_pkts) {
- uint16_t ret, num = (uint16_t)RTE_MIN(nb_pkts,
- I40E_TX_MAX_BURST);
-
- ret = tx_xmit_pkts((struct i40e_tx_queue *)tx_queue,
- &tx_pkts[nb_tx], num);
- nb_tx = (uint16_t)(nb_tx + ret);
- nb_pkts = (uint16_t)(nb_pkts - ret);
- if (ret < num)
- break;
- }
-
- return nb_tx;
-}
-
-// TREX_PATCH
-// Based on i40e_pf_get_vsi_by_qindex. Return low latency VSI one queue.
-#define LOW_LATENCY_WORKAROUND
-#ifdef LOW_LATENCY_WORKAROUND
-static struct i40e_vsi*
-i40e_pf_tx_get_vsi_by_qindex(struct i40e_pf *pf, uint16_t queue_idx)
-{
- // For last queue index, return low latency VSI
- if (queue_idx == pf->dev_data->nb_tx_queues-1) {
- return pf->ll_vsi;
- }
-
- /* the queue in MAIN VSI range */
- if (queue_idx < pf->dev_data->nb_tx_queues)
- return pf->main_vsi;
-
-
- queue_idx -= pf->main_vsi->nb_qps;
-
- /* queue_idx is greater than VMDQ VSIs range */
- if (queue_idx > pf->nb_cfg_vmdq_vsi * pf->vmdq_nb_qps - 1) {
- PMD_INIT_LOG(ERR, "queue_idx out of range. VMDQ configured?");
- return NULL;
- }
-
- return pf->vmdq[queue_idx / pf->vmdq_nb_qps].vsi;
-}
-#endif
-
-/*
- * Find the VSI the queue belongs to. 'queue_idx' is the queue index
- * application used, which assume having sequential ones. But from driver's
- * perspective, it's different. For example, q0 belongs to FDIR VSI, q1-q64
- * to MAIN VSI, , q65-96 to SRIOV VSIs, q97-128 to VMDQ VSIs. For application
- * running on host, q1-64 and q97-128 can be used, total 96 queues. They can
- * use queue_idx from 0 to 95 to access queues, while real queue would be
- * different. This function will do a queue mapping to find VSI the queue
- * belongs to.
- */
-static struct i40e_vsi*
-i40e_pf_get_vsi_by_qindex(struct i40e_pf *pf, uint16_t queue_idx)
-{
- /* the queue in MAIN VSI range */
- if (queue_idx < pf->main_vsi->nb_qps)
- return pf->main_vsi;
-
- queue_idx -= pf->main_vsi->nb_qps;
-
- /* queue_idx is greater than VMDQ VSIs range */
- if (queue_idx > pf->nb_cfg_vmdq_vsi * pf->vmdq_nb_qps - 1) {
- PMD_INIT_LOG(ERR, "queue_idx out of range. VMDQ configured?");
- return NULL;
- }
-
- return pf->vmdq[queue_idx / pf->vmdq_nb_qps].vsi;
-}
-
-static uint16_t
-i40e_get_queue_offset_by_qindex(struct i40e_pf *pf, uint16_t queue_idx)
-{
- /* the queue in MAIN VSI range */
- if (queue_idx < pf->main_vsi->nb_qps)
- return queue_idx;
-
- /* It's VMDQ queues */
- queue_idx -= pf->main_vsi->nb_qps;
-
- if (pf->nb_cfg_vmdq_vsi)
- return queue_idx % pf->vmdq_nb_qps;
- else {
- PMD_INIT_LOG(ERR, "Fail to get queue offset");
- return (uint16_t)(-1);
- }
-}
-
-int
-i40e_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
-{
- struct i40e_rx_queue *rxq;
- int err = -1;
- struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
- PMD_INIT_FUNC_TRACE();
-
- if (rx_queue_id < dev->data->nb_rx_queues) {
- rxq = dev->data->rx_queues[rx_queue_id];
-
- err = i40e_alloc_rx_queue_mbufs(rxq);
- if (err) {
- PMD_DRV_LOG(ERR, "Failed to allocate RX queue mbuf");
- return err;
- }
-
- rte_wmb();
-
- /* Init the RX tail regieter. */
- I40E_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
-
- err = i40e_switch_rx_queue(hw, rxq->reg_idx, TRUE);
-
- if (err) {
- PMD_DRV_LOG(ERR, "Failed to switch RX queue %u on",
- rx_queue_id);
-
- i40e_rx_queue_release_mbufs(rxq);
- i40e_reset_rx_queue(rxq);
- } else
- dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
- }
-
- return err;
-}
-
-int
-i40e_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
-{
- struct i40e_rx_queue *rxq;
- int err;
- struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
- if (rx_queue_id < dev->data->nb_rx_queues) {
- rxq = dev->data->rx_queues[rx_queue_id];
-
- /*
- * rx_queue_id is queue id aplication refers to, while
- * rxq->reg_idx is the real queue index.
- */
- err = i40e_switch_rx_queue(hw, rxq->reg_idx, FALSE);
-
- if (err) {
- PMD_DRV_LOG(ERR, "Failed to switch RX queue %u off",
- rx_queue_id);
- return err;
- }
- i40e_rx_queue_release_mbufs(rxq);
- i40e_reset_rx_queue(rxq);
- dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
- }
-
- return 0;
-}
-
-int
-i40e_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
-{
- int err = -1;
- struct i40e_tx_queue *txq;
- struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
- PMD_INIT_FUNC_TRACE();
-
- if (tx_queue_id < dev->data->nb_tx_queues) {
- txq = dev->data->tx_queues[tx_queue_id];
-
- /*
- * tx_queue_id is queue id aplication refers to, while
- * rxq->reg_idx is the real queue index.
- */
- err = i40e_switch_tx_queue(hw, txq->reg_idx, TRUE);
- if (err)
- PMD_DRV_LOG(ERR, "Failed to switch TX queue %u on",
- tx_queue_id);
- else
- dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
- }
-
- return err;
-}
-
-int
-i40e_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
-{
- struct i40e_tx_queue *txq;
- int err;
- struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
-
- if (tx_queue_id < dev->data->nb_tx_queues) {
- txq = dev->data->tx_queues[tx_queue_id];
-
- /*
- * tx_queue_id is queue id aplication refers to, while
- * txq->reg_idx is the real queue index.
- */
- err = i40e_switch_tx_queue(hw, txq->reg_idx, FALSE);
-
- if (err) {
- PMD_DRV_LOG(ERR, "Failed to switch TX queue %u of",
- tx_queue_id);
- return err;
- }
-
- i40e_tx_queue_release_mbufs(txq);
- i40e_reset_tx_queue(txq);
- dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
- }
-
- return 0;
-}
-
-int
-i40e_dev_rx_queue_setup(struct rte_eth_dev *dev,
- uint16_t queue_idx,
- uint16_t nb_desc,
- unsigned int socket_id,
- const struct rte_eth_rxconf *rx_conf,
- struct rte_mempool *mp)
-{
- struct i40e_vsi *vsi;
- struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
- struct i40e_adapter *ad =
- I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
- struct i40e_rx_queue *rxq;
- const struct rte_memzone *rz;
- uint32_t ring_size;
- uint16_t len, i;
- uint16_t base, bsf, tc_mapping;
- int use_def_burst_func = 1;
-
- if (hw->mac.type == I40E_MAC_VF) {
- struct i40e_vf *vf =
- I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
- vsi = &vf->vsi;
- } else
- vsi = i40e_pf_get_vsi_by_qindex(pf, queue_idx);
-
- if (vsi == NULL) {
- PMD_DRV_LOG(ERR, "VSI not available or queue "
- "index exceeds the maximum");
- return I40E_ERR_PARAM;
- }
- if (nb_desc % I40E_ALIGN_RING_DESC != 0 ||
- (nb_desc > I40E_MAX_RING_DESC) ||
- (nb_desc < I40E_MIN_RING_DESC)) {
- PMD_DRV_LOG(ERR, "Number (%u) of receive descriptors is "
- "invalid", nb_desc);
- return I40E_ERR_PARAM;
- }
-
- /* Free memory if needed */
- if (dev->data->rx_queues[queue_idx]) {
- i40e_dev_rx_queue_release(dev->data->rx_queues[queue_idx]);
- dev->data->rx_queues[queue_idx] = NULL;
- }
-
- /* Allocate the rx queue data structure */
- rxq = rte_zmalloc_socket("i40e rx queue",
- sizeof(struct i40e_rx_queue),
- RTE_CACHE_LINE_SIZE,
- socket_id);
- if (!rxq) {
- PMD_DRV_LOG(ERR, "Failed to allocate memory for "
- "rx queue data structure");
- return (-ENOMEM);
- }
- rxq->mp = mp;
- rxq->nb_rx_desc = nb_desc;
- rxq->rx_free_thresh = rx_conf->rx_free_thresh;
- rxq->queue_id = queue_idx;
- if (hw->mac.type == I40E_MAC_VF)
- rxq->reg_idx = queue_idx;
- else /* PF device */
- rxq->reg_idx = vsi->base_queue +
- i40e_get_queue_offset_by_qindex(pf, queue_idx);
-
- rxq->port_id = dev->data->port_id;
- rxq->crc_len = (uint8_t) ((dev->data->dev_conf.rxmode.hw_strip_crc) ?
- 0 : ETHER_CRC_LEN);
- rxq->drop_en = rx_conf->rx_drop_en;
- rxq->vsi = vsi;
- rxq->rx_deferred_start = rx_conf->rx_deferred_start;
-
- /* Allocate the maximun number of RX ring hardware descriptor. */
- ring_size = sizeof(union i40e_rx_desc) * I40E_MAX_RING_DESC;
- ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
- rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx,
- ring_size, I40E_RING_BASE_ALIGN, socket_id);
- if (!rz) {
- i40e_dev_rx_queue_release(rxq);
- PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for RX");
- return (-ENOMEM);
- }
-
- /* Zero all the descriptors in the ring. */
- memset(rz->addr, 0, ring_size);
-
- rxq->rx_ring_phys_addr = rte_mem_phy2mch(rz->memseg_id, rz->phys_addr);
- rxq->rx_ring = (union i40e_rx_desc *)rz->addr;
-
-#ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
- len = (uint16_t)(nb_desc + RTE_PMD_I40E_RX_MAX_BURST);
-#else
- len = nb_desc;
-#endif
-
- /* Allocate the software ring. */
- rxq->sw_ring =
- rte_zmalloc_socket("i40e rx sw ring",
- sizeof(struct i40e_rx_entry) * len,
- RTE_CACHE_LINE_SIZE,
- socket_id);
- if (!rxq->sw_ring) {
- i40e_dev_rx_queue_release(rxq);
- PMD_DRV_LOG(ERR, "Failed to allocate memory for SW ring");
- return (-ENOMEM);
- }
-
- i40e_reset_rx_queue(rxq);
- rxq->q_set = TRUE;
- dev->data->rx_queues[queue_idx] = rxq;
-
- use_def_burst_func = check_rx_burst_bulk_alloc_preconditions(rxq);
-
- if (!use_def_burst_func) {
-#ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
- PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
- "satisfied. Rx Burst Bulk Alloc function will be "
- "used on port=%d, queue=%d.",
- rxq->port_id, rxq->queue_id);
-#endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
- } else {
- PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
- "not satisfied, Scattered Rx is requested, "
- "or RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC is "
- "not enabled on port=%d, queue=%d.",
- rxq->port_id, rxq->queue_id);
- ad->rx_bulk_alloc_allowed = false;
- }
-
- for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
- if (!(vsi->enabled_tc & (1 << i)))
- continue;
- tc_mapping = rte_le_to_cpu_16(vsi->info.tc_mapping[i]);
- base = (tc_mapping & I40E_AQ_VSI_TC_QUE_OFFSET_MASK) >>
- I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT;
- bsf = (tc_mapping & I40E_AQ_VSI_TC_QUE_NUMBER_MASK) >>
- I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT;
-
- if (queue_idx >= base && queue_idx < (base + BIT(bsf)))
- rxq->dcb_tc = i;
- }
-
- return 0;
-}
-
-void
-i40e_dev_rx_queue_release(void *rxq)
-{
- struct i40e_rx_queue *q = (struct i40e_rx_queue *)rxq;
-
- if (!q) {
- PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL");
- return;
- }
-
- i40e_rx_queue_release_mbufs(q);
- rte_free(q->sw_ring);
- rte_free(q);
-}
-
-uint32_t
-i40e_dev_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
-{
-#define I40E_RXQ_SCAN_INTERVAL 4
- volatile union i40e_rx_desc *rxdp;
- struct i40e_rx_queue *rxq;
- uint16_t desc = 0;
-
- if (unlikely(rx_queue_id >= dev->data->nb_rx_queues)) {
- PMD_DRV_LOG(ERR, "Invalid RX queue id %u", rx_queue_id);
- return 0;
- }
-
- rxq = dev->data->rx_queues[rx_queue_id];
- rxdp = &(rxq->rx_ring[rxq->rx_tail]);
- while ((desc < rxq->nb_rx_desc) &&
- ((rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
- I40E_RXD_QW1_STATUS_MASK) >> I40E_RXD_QW1_STATUS_SHIFT) &
- (1 << I40E_RX_DESC_STATUS_DD_SHIFT)) {
- /**
- * Check the DD bit of a rx descriptor of each 4 in a group,
- * to avoid checking too frequently and downgrading performance
- * too much.
- */
- desc += I40E_RXQ_SCAN_INTERVAL;
- rxdp += I40E_RXQ_SCAN_INTERVAL;
- if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
- rxdp = &(rxq->rx_ring[rxq->rx_tail +
- desc - rxq->nb_rx_desc]);
- }
-
- return desc;
-}
-
-int
-i40e_dev_rx_descriptor_done(void *rx_queue, uint16_t offset)
-{
- volatile union i40e_rx_desc *rxdp;
- struct i40e_rx_queue *rxq = rx_queue;
- uint16_t desc;
- int ret;
-
- if (unlikely(offset >= rxq->nb_rx_desc)) {
- PMD_DRV_LOG(ERR, "Invalid RX queue id %u", offset);
- return 0;
- }
-
- desc = rxq->rx_tail + offset;
- if (desc >= rxq->nb_rx_desc)
- desc -= rxq->nb_rx_desc;
-
- rxdp = &(rxq->rx_ring[desc]);
-
- ret = !!(((rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
- I40E_RXD_QW1_STATUS_MASK) >> I40E_RXD_QW1_STATUS_SHIFT) &
- (1 << I40E_RX_DESC_STATUS_DD_SHIFT));
-
- return ret;
-}
-
-int
-i40e_dev_tx_queue_setup(struct rte_eth_dev *dev,
- uint16_t queue_idx,
- uint16_t nb_desc,
- unsigned int socket_id,
- const struct rte_eth_txconf *tx_conf)
-{
- struct i40e_vsi *vsi;
- struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
- struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
- struct i40e_tx_queue *txq;
- const struct rte_memzone *tz;
- uint32_t ring_size;
- uint16_t tx_rs_thresh, tx_free_thresh;
- uint16_t i, base, bsf, tc_mapping;
-
- if (hw->mac.type == I40E_MAC_VF) {
- struct i40e_vf *vf =
- I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
- vsi = &vf->vsi;
- } else {
-// TREX_PATCH
-#ifdef LOW_LATENCY_WORKAROUND
- vsi = i40e_pf_tx_get_vsi_by_qindex(pf, queue_idx);
-#else
- vsi = i40e_pf_get_vsi_by_qindex(pf, queue_idx);
-#endif
- }
-
- if (vsi == NULL) {
- PMD_DRV_LOG(ERR, "VSI is NULL, or queue index (%u) "
- "exceeds the maximum", queue_idx);
- return I40E_ERR_PARAM;
- }
-
- if (nb_desc % I40E_ALIGN_RING_DESC != 0 ||
- (nb_desc > I40E_MAX_RING_DESC) ||
- (nb_desc < I40E_MIN_RING_DESC)) {
- PMD_DRV_LOG(ERR, "Number (%u) of transmit descriptors is "
- "invalid", nb_desc);
- return I40E_ERR_PARAM;
- }
-
- /**
- * The following two parameters control the setting of the RS bit on
- * transmit descriptors. TX descriptors will have their RS bit set
- * after txq->tx_rs_thresh descriptors have been used. The TX
- * descriptor ring will be cleaned after txq->tx_free_thresh
- * descriptors are used or if the number of descriptors required to
- * transmit a packet is greater than the number of free TX descriptors.
- *
- * The following constraints must be satisfied:
- * - tx_rs_thresh must be greater than 0.
- * - tx_rs_thresh must be less than the size of the ring minus 2.
- * - tx_rs_thresh must be less than or equal to tx_free_thresh.
- * - tx_rs_thresh must be a divisor of the ring size.
- * - tx_free_thresh must be greater than 0.
- * - tx_free_thresh must be less than the size of the ring minus 3.
- *
- * One descriptor in the TX ring is used as a sentinel to avoid a H/W
- * race condition, hence the maximum threshold constraints. When set
- * to zero use default values.
- */
- tx_rs_thresh = (uint16_t)((tx_conf->tx_rs_thresh) ?
- tx_conf->tx_rs_thresh : DEFAULT_TX_RS_THRESH);
- tx_free_thresh = (uint16_t)((tx_conf->tx_free_thresh) ?
- tx_conf->tx_free_thresh : DEFAULT_TX_FREE_THRESH);
- if (tx_rs_thresh >= (nb_desc - 2)) {
- PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
- "number of TX descriptors minus 2. "
- "(tx_rs_thresh=%u port=%d queue=%d)",
- (unsigned int)tx_rs_thresh,
- (int)dev->data->port_id,
- (int)queue_idx);
- return I40E_ERR_PARAM;
- }
- if (tx_free_thresh >= (nb_desc - 3)) {
- PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
- "tx_free_thresh must be less than the "
- "number of TX descriptors minus 3. "
- "(tx_free_thresh=%u port=%d queue=%d)",
- (unsigned int)tx_free_thresh,
- (int)dev->data->port_id,
- (int)queue_idx);
- return I40E_ERR_PARAM;
- }
- if (tx_rs_thresh > tx_free_thresh) {
- PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than or "
- "equal to tx_free_thresh. (tx_free_thresh=%u"
- " tx_rs_thresh=%u port=%d queue=%d)",
- (unsigned int)tx_free_thresh,
- (unsigned int)tx_rs_thresh,
- (int)dev->data->port_id,
- (int)queue_idx);
- return I40E_ERR_PARAM;
- }
- if ((nb_desc % tx_rs_thresh) != 0) {
- PMD_INIT_LOG(ERR, "tx_rs_thresh must be a divisor of the "
- "number of TX descriptors. (tx_rs_thresh=%u"
- " port=%d queue=%d)",
- (unsigned int)tx_rs_thresh,
- (int)dev->data->port_id,
- (int)queue_idx);
- return I40E_ERR_PARAM;
- }
- if ((tx_rs_thresh > 1) && (tx_conf->tx_thresh.wthresh != 0)) {
- PMD_INIT_LOG(ERR, "TX WTHRESH must be set to 0 if "
- "tx_rs_thresh is greater than 1. "
- "(tx_rs_thresh=%u port=%d queue=%d)",
- (unsigned int)tx_rs_thresh,
- (int)dev->data->port_id,
- (int)queue_idx);
- return I40E_ERR_PARAM;
- }
-
- /* Free memory if needed. */
- if (dev->data->tx_queues[queue_idx]) {
- i40e_dev_tx_queue_release(dev->data->tx_queues[queue_idx]);
- dev->data->tx_queues[queue_idx] = NULL;
- }
-
- /* Allocate the TX queue data structure. */
- txq = rte_zmalloc_socket("i40e tx queue",
- sizeof(struct i40e_tx_queue),
- RTE_CACHE_LINE_SIZE,
- socket_id);
- if (!txq) {
- PMD_DRV_LOG(ERR, "Failed to allocate memory for "
- "tx queue structure");
- return (-ENOMEM);
- }
-
- /* Allocate TX hardware ring descriptors. */
- ring_size = sizeof(struct i40e_tx_desc) * I40E_MAX_RING_DESC;
- ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
- tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx,
- ring_size, I40E_RING_BASE_ALIGN, socket_id);
- if (!tz) {
- i40e_dev_tx_queue_release(txq);
- PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for TX");
- return (-ENOMEM);
- }
-
- txq->nb_tx_desc = nb_desc;
- txq->tx_rs_thresh = tx_rs_thresh;
- txq->tx_free_thresh = tx_free_thresh;
- txq->pthresh = tx_conf->tx_thresh.pthresh;
- txq->hthresh = tx_conf->tx_thresh.hthresh;
- txq->wthresh = tx_conf->tx_thresh.wthresh;
- txq->queue_id = queue_idx;
- if (hw->mac.type == I40E_MAC_VF)
- txq->reg_idx = queue_idx;
- else /* PF device */
- txq->reg_idx = vsi->base_queue +
- i40e_get_queue_offset_by_qindex(pf, queue_idx);
-
- txq->port_id = dev->data->port_id;
- txq->txq_flags = tx_conf->txq_flags;
- txq->vsi = vsi;
- txq->tx_deferred_start = tx_conf->tx_deferred_start;
-
- txq->tx_ring_phys_addr = rte_mem_phy2mch(tz->memseg_id, tz->phys_addr);
- txq->tx_ring = (struct i40e_tx_desc *)tz->addr;
-
- /* Allocate software ring */
- txq->sw_ring =
- rte_zmalloc_socket("i40e tx sw ring",
- sizeof(struct i40e_tx_entry) * nb_desc,
- RTE_CACHE_LINE_SIZE,
- socket_id);
- if (!txq->sw_ring) {
- i40e_dev_tx_queue_release(txq);
- PMD_DRV_LOG(ERR, "Failed to allocate memory for SW TX ring");
- return (-ENOMEM);
- }
-
- i40e_reset_tx_queue(txq);
- txq->q_set = TRUE;
- dev->data->tx_queues[queue_idx] = txq;
-
- /* Use a simple TX queue without offloads or multi segs if possible */
- i40e_set_tx_function_flag(dev, txq);
-
- for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
- if (!(vsi->enabled_tc & (1 << i)))
- continue;
- tc_mapping = rte_le_to_cpu_16(vsi->info.tc_mapping[i]);
- base = (tc_mapping & I40E_AQ_VSI_TC_QUE_OFFSET_MASK) >>
- I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT;
- bsf = (tc_mapping & I40E_AQ_VSI_TC_QUE_NUMBER_MASK) >>
- I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT;
-
- if (queue_idx >= base && queue_idx < (base + BIT(bsf)))
- txq->dcb_tc = i;
- }
-
- return 0;
-}
-
-void
-i40e_dev_tx_queue_release(void *txq)
-{
- struct i40e_tx_queue *q = (struct i40e_tx_queue *)txq;
-
- if (!q) {
- PMD_DRV_LOG(DEBUG, "Pointer to TX queue is NULL");
- return;
- }
-
- i40e_tx_queue_release_mbufs(q);
- rte_free(q->sw_ring);
- rte_free(q);
-}
-
-const struct rte_memzone *
-i40e_memzone_reserve(const char *name, uint32_t len, int socket_id)
-{
- const struct rte_memzone *mz;
-
- mz = rte_memzone_lookup(name);
- if (mz)
- return mz;
-
- if (rte_xen_dom0_supported())
- mz = rte_memzone_reserve_bounded(name, len,
- socket_id, 0, I40E_RING_BASE_ALIGN, RTE_PGSIZE_2M);
- else
- mz = rte_memzone_reserve_aligned(name, len,
- socket_id, 0, I40E_RING_BASE_ALIGN);
- return mz;
-}
-
-void
-i40e_rx_queue_release_mbufs(struct i40e_rx_queue *rxq)
-{
- uint16_t i;
-
- /* SSE Vector driver has a different way of releasing mbufs. */
- if (rxq->rx_using_sse) {
- i40e_rx_queue_release_mbufs_vec(rxq);
- return;
- }
-
- if (!rxq || !rxq->sw_ring) {
- PMD_DRV_LOG(DEBUG, "Pointer to rxq or sw_ring is NULL");
- return;
- }
-
- for (i = 0; i < rxq->nb_rx_desc; i++) {
- if (rxq->sw_ring[i].mbuf) {
- rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
- rxq->sw_ring[i].mbuf = NULL;
- }
- }
-#ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
- if (rxq->rx_nb_avail == 0)
- return;
- for (i = 0; i < rxq->rx_nb_avail; i++) {
- struct rte_mbuf *mbuf;
-
- mbuf = rxq->rx_stage[rxq->rx_next_avail + i];
- rte_pktmbuf_free_seg(mbuf);
- }
- rxq->rx_nb_avail = 0;
-#endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
-}
-
-void
-i40e_reset_rx_queue(struct i40e_rx_queue *rxq)
-{
- unsigned i;
- uint16_t len;
-
- if (!rxq) {
- PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL");
- return;
- }
-
-#ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
- if (check_rx_burst_bulk_alloc_preconditions(rxq) == 0)
- len = (uint16_t)(rxq->nb_rx_desc + RTE_PMD_I40E_RX_MAX_BURST);
- else
-#endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
- len = rxq->nb_rx_desc;
-
- for (i = 0; i < len * sizeof(union i40e_rx_desc); i++)
- ((volatile char *)rxq->rx_ring)[i] = 0;
-
-#ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
- memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
- for (i = 0; i < RTE_PMD_I40E_RX_MAX_BURST; ++i)
- rxq->sw_ring[rxq->nb_rx_desc + i].mbuf = &rxq->fake_mbuf;
-
- rxq->rx_nb_avail = 0;
- rxq->rx_next_avail = 0;
- rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
-#endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
- rxq->rx_tail = 0;
- rxq->nb_rx_hold = 0;
- rxq->pkt_first_seg = NULL;
- rxq->pkt_last_seg = NULL;
-
- rxq->rxrearm_start = 0;
- rxq->rxrearm_nb = 0;
-}
-
-void
-i40e_tx_queue_release_mbufs(struct i40e_tx_queue *txq)
-{
- uint16_t i;
-
- if (!txq || !txq->sw_ring) {
- PMD_DRV_LOG(DEBUG, "Pointer to rxq or sw_ring is NULL");
- return;
- }
-
- for (i = 0; i < txq->nb_tx_desc; i++) {
- if (txq->sw_ring[i].mbuf) {
- rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
- txq->sw_ring[i].mbuf = NULL;
- }
- }
-}
-
-void
-i40e_reset_tx_queue(struct i40e_tx_queue *txq)
-{
- struct i40e_tx_entry *txe;
- uint16_t i, prev, size;
-
- if (!txq) {
- PMD_DRV_LOG(DEBUG, "Pointer to txq is NULL");
- return;
- }
-
- txe = txq->sw_ring;
- size = sizeof(struct i40e_tx_desc) * txq->nb_tx_desc;
- for (i = 0; i < size; i++)
- ((volatile char *)txq->tx_ring)[i] = 0;
-
- prev = (uint16_t)(txq->nb_tx_desc - 1);
- for (i = 0; i < txq->nb_tx_desc; i++) {
- volatile struct i40e_tx_desc *txd = &txq->tx_ring[i];
-
- txd->cmd_type_offset_bsz =
- rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE);
- txe[i].mbuf = NULL;
- txe[i].last_id = i;
- txe[prev].next_id = i;
- prev = i;
- }
-
- txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
- txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
-
- txq->tx_tail = 0;
- txq->nb_tx_used = 0;
-
- txq->last_desc_cleaned = (uint16_t)(txq->nb_tx_desc - 1);
- txq->nb_tx_free = (uint16_t)(txq->nb_tx_desc - 1);
-}
-
-/* Init the TX queue in hardware */
-int
-i40e_tx_queue_init(struct i40e_tx_queue *txq)
-{
- enum i40e_status_code err = I40E_SUCCESS;
- struct i40e_vsi *vsi = txq->vsi;
- struct i40e_hw *hw = I40E_VSI_TO_HW(vsi);
- uint16_t pf_q = txq->reg_idx;
- struct i40e_hmc_obj_txq tx_ctx;
- uint32_t qtx_ctl;
-
- /* clear the context structure first */
- memset(&tx_ctx, 0, sizeof(tx_ctx));
- tx_ctx.new_context = 1;
- tx_ctx.base = txq->tx_ring_phys_addr / I40E_QUEUE_BASE_ADDR_UNIT;
- tx_ctx.qlen = txq->nb_tx_desc;
-
-#ifdef RTE_LIBRTE_IEEE1588
- tx_ctx.timesync_ena = 1;
-#endif
- tx_ctx.rdylist = rte_le_to_cpu_16(vsi->info.qs_handle[txq->dcb_tc]);
- if (vsi->type == I40E_VSI_FDIR)
- tx_ctx.fd_ena = TRUE;
-
- err = i40e_clear_lan_tx_queue_context(hw, pf_q);
- if (err != I40E_SUCCESS) {
- PMD_DRV_LOG(ERR, "Failure of clean lan tx queue context");
- return err;
- }
-
- err = i40e_set_lan_tx_queue_context(hw, pf_q, &tx_ctx);
- if (err != I40E_SUCCESS) {
- PMD_DRV_LOG(ERR, "Failure of set lan tx queue context");
- return err;
- }
-
- /* Now associate this queue with this PCI function */
- qtx_ctl = I40E_QTX_CTL_PF_QUEUE;
- qtx_ctl |= ((hw->pf_id << I40E_QTX_CTL_PF_INDX_SHIFT) &
- I40E_QTX_CTL_PF_INDX_MASK);
- I40E_WRITE_REG(hw, I40E_QTX_CTL(pf_q), qtx_ctl);
- I40E_WRITE_FLUSH(hw);
-
- txq->qtx_tail = hw->hw_addr + I40E_QTX_TAIL(pf_q);
-
- return err;
-}
-
-int
-i40e_alloc_rx_queue_mbufs(struct i40e_rx_queue *rxq)
-{
- struct i40e_rx_entry *rxe = rxq->sw_ring;
- uint64_t dma_addr;
- uint16_t i;
-
- for (i = 0; i < rxq->nb_rx_desc; i++) {
- volatile union i40e_rx_desc *rxd;
- struct rte_mbuf *mbuf = rte_rxmbuf_alloc(rxq->mp);
-
- if (unlikely(!mbuf)) {
- PMD_DRV_LOG(ERR, "Failed to allocate mbuf for RX");
- return -ENOMEM;
- }
-
- rte_mbuf_refcnt_set(mbuf, 1);
- mbuf->next = NULL;
- mbuf->data_off = RTE_PKTMBUF_HEADROOM;
- mbuf->nb_segs = 1;
- mbuf->port = rxq->port_id;
-
- dma_addr =
- rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(mbuf));
-
- rxd = &rxq->rx_ring[i];
- rxd->read.pkt_addr = dma_addr;
- rxd->read.hdr_addr = 0;
-#ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
- rxd->read.rsvd1 = 0;
- rxd->read.rsvd2 = 0;
-#endif /* RTE_LIBRTE_I40E_16BYTE_RX_DESC */
-
- rxe[i].mbuf = mbuf;
- }
-
- return 0;
-}
-
-/*
- * Calculate the buffer length, and check the jumbo frame
- * and maximum packet length.
- */
-static int
-i40e_rx_queue_config(struct i40e_rx_queue *rxq)
-{
- struct i40e_pf *pf = I40E_VSI_TO_PF(rxq->vsi);
- struct i40e_hw *hw = I40E_VSI_TO_HW(rxq->vsi);
- struct rte_eth_dev_data *data = pf->dev_data;
- uint16_t buf_size, len;
-
- buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
- RTE_PKTMBUF_HEADROOM);
-
- switch (pf->flags & (I40E_FLAG_HEADER_SPLIT_DISABLED |
- I40E_FLAG_HEADER_SPLIT_ENABLED)) {
- case I40E_FLAG_HEADER_SPLIT_ENABLED: /* Not supported */
- rxq->rx_hdr_len = RTE_ALIGN(I40E_RXBUF_SZ_1024,
- (1 << I40E_RXQ_CTX_HBUFF_SHIFT));
- rxq->rx_buf_len = RTE_ALIGN(I40E_RXBUF_SZ_2048,
- (1 << I40E_RXQ_CTX_DBUFF_SHIFT));
- rxq->hs_mode = i40e_header_split_enabled;
- break;
- case I40E_FLAG_HEADER_SPLIT_DISABLED:
- default:
- rxq->rx_hdr_len = 0;
- rxq->rx_buf_len = RTE_ALIGN(buf_size,
- (1 << I40E_RXQ_CTX_DBUFF_SHIFT));
- rxq->hs_mode = i40e_header_split_none;
- break;
- }
-
- len = hw->func_caps.rx_buf_chain_len * rxq->rx_buf_len;
- rxq->max_pkt_len = RTE_MIN(len, data->dev_conf.rxmode.max_rx_pkt_len);
- if (data->dev_conf.rxmode.jumbo_frame == 1) {
- if (rxq->max_pkt_len <= ETHER_MAX_LEN ||
- rxq->max_pkt_len > I40E_FRAME_SIZE_MAX) {
- PMD_DRV_LOG(ERR, "maximum packet length must "
- "be larger than %u and smaller than %u,"
- "as jumbo frame is enabled",
- (uint32_t)ETHER_MAX_LEN,
- (uint32_t)I40E_FRAME_SIZE_MAX);
- return I40E_ERR_CONFIG;
- }
- } else {
- if (rxq->max_pkt_len < ETHER_MIN_LEN ||
- rxq->max_pkt_len > ETHER_MAX_LEN) {
- PMD_DRV_LOG(ERR, "maximum packet length must be "
- "larger than %u and smaller than %u, "
- "as jumbo frame is disabled",
- (uint32_t)ETHER_MIN_LEN,
- (uint32_t)ETHER_MAX_LEN);
- return I40E_ERR_CONFIG;
- }
- }
-
- return 0;
-}
-
-/* Init the RX queue in hardware */
-int
-i40e_rx_queue_init(struct i40e_rx_queue *rxq)
-{
- int err = I40E_SUCCESS;
- struct i40e_hw *hw = I40E_VSI_TO_HW(rxq->vsi);
- struct rte_eth_dev_data *dev_data = I40E_VSI_TO_DEV_DATA(rxq->vsi);
- uint16_t pf_q = rxq->reg_idx;
- uint16_t buf_size;
- struct i40e_hmc_obj_rxq rx_ctx;
-
- err = i40e_rx_queue_config(rxq);
- if (err < 0) {
- PMD_DRV_LOG(ERR, "Failed to config RX queue");
- return err;
- }
-
- /* Clear the context structure first */
- memset(&rx_ctx, 0, sizeof(struct i40e_hmc_obj_rxq));
- rx_ctx.dbuff = rxq->rx_buf_len >> I40E_RXQ_CTX_DBUFF_SHIFT;
- rx_ctx.hbuff = rxq->rx_hdr_len >> I40E_RXQ_CTX_HBUFF_SHIFT;
-
- rx_ctx.base = rxq->rx_ring_phys_addr / I40E_QUEUE_BASE_ADDR_UNIT;
- rx_ctx.qlen = rxq->nb_rx_desc;
-#ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
- rx_ctx.dsize = 1;
-#endif
- rx_ctx.dtype = rxq->hs_mode;
- if (rxq->hs_mode)
- rx_ctx.hsplit_0 = I40E_HEADER_SPLIT_ALL;
- else
- rx_ctx.hsplit_0 = I40E_HEADER_SPLIT_NONE;
- rx_ctx.rxmax = rxq->max_pkt_len;
- rx_ctx.tphrdesc_ena = 1;
- rx_ctx.tphwdesc_ena = 1;
- rx_ctx.tphdata_ena = 1;
- rx_ctx.tphhead_ena = 1;
- rx_ctx.lrxqthresh = 2;
- rx_ctx.crcstrip = (rxq->crc_len == 0) ? 1 : 0;
- rx_ctx.l2tsel = 1;
- rx_ctx.showiv = 1;
- rx_ctx.prefena = 1;
-
- err = i40e_clear_lan_rx_queue_context(hw, pf_q);
- if (err != I40E_SUCCESS) {
- PMD_DRV_LOG(ERR, "Failed to clear LAN RX queue context");
- return err;
- }
- err = i40e_set_lan_rx_queue_context(hw, pf_q, &rx_ctx);
- if (err != I40E_SUCCESS) {
- PMD_DRV_LOG(ERR, "Failed to set LAN RX queue context");
- return err;
- }
-
- rxq->qrx_tail = hw->hw_addr + I40E_QRX_TAIL(pf_q);
-
- buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
- RTE_PKTMBUF_HEADROOM);
-
- /* Check if scattered RX needs to be used. */
- if ((rxq->max_pkt_len + 2 * I40E_VLAN_TAG_SIZE) > buf_size) {
- dev_data->scattered_rx = 1;
- }
-
- /* Init the RX tail regieter. */
- I40E_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
-
- return 0;
-}
-
-void
-i40e_dev_clear_queues(struct rte_eth_dev *dev)
-{
- uint16_t i;
-
- PMD_INIT_FUNC_TRACE();
-
- for (i = 0; i < dev->data->nb_tx_queues; i++) {
- i40e_tx_queue_release_mbufs(dev->data->tx_queues[i]);
- i40e_reset_tx_queue(dev->data->tx_queues[i]);
- }
-
- for (i = 0; i < dev->data->nb_rx_queues; i++) {
- i40e_rx_queue_release_mbufs(dev->data->rx_queues[i]);
- i40e_reset_rx_queue(dev->data->rx_queues[i]);
- }
-}
-
-void
-i40e_dev_free_queues(struct rte_eth_dev *dev)
-{
- uint16_t i;
-
- PMD_INIT_FUNC_TRACE();
-
- for (i = 0; i < dev->data->nb_rx_queues; i++) {
- i40e_dev_rx_queue_release(dev->data->rx_queues[i]);
- dev->data->rx_queues[i] = NULL;
- }
- dev->data->nb_rx_queues = 0;
-
- for (i = 0; i < dev->data->nb_tx_queues; i++) {
- i40e_dev_tx_queue_release(dev->data->tx_queues[i]);
- dev->data->tx_queues[i] = NULL;
- }
- dev->data->nb_tx_queues = 0;
-}
-
-#define I40E_FDIR_NUM_TX_DESC I40E_MIN_RING_DESC
-#define I40E_FDIR_NUM_RX_DESC I40E_MIN_RING_DESC
-
-enum i40e_status_code
-i40e_fdir_setup_tx_resources(struct i40e_pf *pf)
-{
- struct i40e_tx_queue *txq;
- const struct rte_memzone *tz = NULL;
- uint32_t ring_size;
- struct rte_eth_dev *dev = pf->adapter->eth_dev;
-
- if (!pf) {
- PMD_DRV_LOG(ERR, "PF is not available");
- return I40E_ERR_BAD_PTR;
- }
-
- /* Allocate the TX queue data structure. */
- txq = rte_zmalloc_socket("i40e fdir tx queue",
- sizeof(struct i40e_tx_queue),
- RTE_CACHE_LINE_SIZE,
- SOCKET_ID_ANY);
- if (!txq) {
- PMD_DRV_LOG(ERR, "Failed to allocate memory for "
- "tx queue structure.");
- return I40E_ERR_NO_MEMORY;
- }
-
- /* Allocate TX hardware ring descriptors. */
- ring_size = sizeof(struct i40e_tx_desc) * I40E_FDIR_NUM_TX_DESC;
- ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
-
- tz = rte_eth_dma_zone_reserve(dev, "fdir_tx_ring",
- I40E_FDIR_QUEUE_ID, ring_size,
- I40E_RING_BASE_ALIGN, SOCKET_ID_ANY);
- if (!tz) {
- i40e_dev_tx_queue_release(txq);
- PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for TX.");
- return I40E_ERR_NO_MEMORY;
- }
-
- txq->nb_tx_desc = I40E_FDIR_NUM_TX_DESC;
- txq->queue_id = I40E_FDIR_QUEUE_ID;
- txq->reg_idx = pf->fdir.fdir_vsi->base_queue;
- txq->vsi = pf->fdir.fdir_vsi;
-
- txq->tx_ring_phys_addr = rte_mem_phy2mch(tz->memseg_id, tz->phys_addr);
- txq->tx_ring = (struct i40e_tx_desc *)tz->addr;
- /*
- * don't need to allocate software ring and reset for the fdir
- * program queue just set the queue has been configured.
- */
- txq->q_set = TRUE;
- pf->fdir.txq = txq;
-
- return I40E_SUCCESS;
-}
-
-enum i40e_status_code
-i40e_fdir_setup_rx_resources(struct i40e_pf *pf)
-{
- struct i40e_rx_queue *rxq;
- const struct rte_memzone *rz = NULL;
- uint32_t ring_size;
- struct rte_eth_dev *dev = pf->adapter->eth_dev;
-
- if (!pf) {
- PMD_DRV_LOG(ERR, "PF is not available");
- return I40E_ERR_BAD_PTR;
- }
-
- /* Allocate the RX queue data structure. */
- rxq = rte_zmalloc_socket("i40e fdir rx queue",
- sizeof(struct i40e_rx_queue),
- RTE_CACHE_LINE_SIZE,
- SOCKET_ID_ANY);
- if (!rxq) {
- PMD_DRV_LOG(ERR, "Failed to allocate memory for "
- "rx queue structure.");
- return I40E_ERR_NO_MEMORY;
- }
-
- /* Allocate RX hardware ring descriptors. */
- ring_size = sizeof(union i40e_rx_desc) * I40E_FDIR_NUM_RX_DESC;
- ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
-
- rz = rte_eth_dma_zone_reserve(dev, "fdir_rx_ring",
- I40E_FDIR_QUEUE_ID, ring_size,
- I40E_RING_BASE_ALIGN, SOCKET_ID_ANY);
- if (!rz) {
- i40e_dev_rx_queue_release(rxq);
- PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for RX.");
- return I40E_ERR_NO_MEMORY;
- }
-
- rxq->nb_rx_desc = I40E_FDIR_NUM_RX_DESC;
- rxq->queue_id = I40E_FDIR_QUEUE_ID;
- rxq->reg_idx = pf->fdir.fdir_vsi->base_queue;
- rxq->vsi = pf->fdir.fdir_vsi;
-
- rxq->rx_ring_phys_addr = rte_mem_phy2mch(rz->memseg_id, rz->phys_addr);
- rxq->rx_ring = (union i40e_rx_desc *)rz->addr;
-
- /*
- * Don't need to allocate software ring and reset for the fdir
- * rx queue, just set the queue has been configured.
- */
- rxq->q_set = TRUE;
- pf->fdir.rxq = rxq;
-
- return I40E_SUCCESS;
-}
-
-void
-i40e_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
- struct rte_eth_rxq_info *qinfo)
-{
- struct i40e_rx_queue *rxq;
-
- rxq = dev->data->rx_queues[queue_id];
-
- qinfo->mp = rxq->mp;
- qinfo->scattered_rx = dev->data->scattered_rx;
- qinfo->nb_desc = rxq->nb_rx_desc;
-
- qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
- qinfo->conf.rx_drop_en = rxq->drop_en;
- qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
-}
-
-void
-i40e_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
- struct rte_eth_txq_info *qinfo)
-{
- struct i40e_tx_queue *txq;
-
- txq = dev->data->tx_queues[queue_id];
-
- qinfo->nb_desc = txq->nb_tx_desc;
-
- qinfo->conf.tx_thresh.pthresh = txq->pthresh;
- qinfo->conf.tx_thresh.hthresh = txq->hthresh;
- qinfo->conf.tx_thresh.wthresh = txq->wthresh;
-
- qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
- qinfo->conf.tx_rs_thresh = txq->tx_rs_thresh;
- qinfo->conf.txq_flags = txq->txq_flags;
- qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
-}
-
-void __attribute__((cold))
-i40e_set_rx_function(struct rte_eth_dev *dev)
-{
- struct i40e_adapter *ad =
- I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
- uint16_t rx_using_sse, i;
- /* In order to allow Vector Rx there are a few configuration
- * conditions to be met and Rx Bulk Allocation should be allowed.
- */
- if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
- if (i40e_rx_vec_dev_conf_condition_check(dev) ||
- !ad->rx_bulk_alloc_allowed) {
- PMD_INIT_LOG(DEBUG, "Port[%d] doesn't meet"
- " Vector Rx preconditions",
- dev->data->port_id);
-
- ad->rx_vec_allowed = false;
- }
- if (ad->rx_vec_allowed) {
- for (i = 0; i < dev->data->nb_rx_queues; i++) {
- struct i40e_rx_queue *rxq =
- dev->data->rx_queues[i];
-
- if (i40e_rxq_vec_setup(rxq)) {
- ad->rx_vec_allowed = false;
- break;
- }
- }
- }
- }
-
- if (dev->data->scattered_rx) {
- /* Set the non-LRO scattered callback: there are Vector and
- * single allocation versions.
- */
- if (ad->rx_vec_allowed) {
- PMD_INIT_LOG(DEBUG, "Using Vector Scattered Rx "
- "callback (port=%d).",
- dev->data->port_id);
-
- dev->rx_pkt_burst = i40e_recv_scattered_pkts_vec;
- } else {
- PMD_INIT_LOG(DEBUG, "Using a Scattered with bulk "
- "allocation callback (port=%d).",
- dev->data->port_id);
- dev->rx_pkt_burst = i40e_recv_scattered_pkts;
- }
- /* If parameters allow we are going to choose between the following
- * callbacks:
- * - Vector
- * - Bulk Allocation
- * - Single buffer allocation (the simplest one)
- */
- } else if (ad->rx_vec_allowed) {
- PMD_INIT_LOG(DEBUG, "Vector rx enabled, please make sure RX "
- "burst size no less than %d (port=%d).",
- RTE_I40E_DESCS_PER_LOOP,
- dev->data->port_id);
-
- dev->rx_pkt_burst = i40e_recv_pkts_vec;
- } else if (ad->rx_bulk_alloc_allowed) {
- PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
- "satisfied. Rx Burst Bulk Alloc function "
- "will be used on port=%d.",
- dev->data->port_id);
-
- dev->rx_pkt_burst = i40e_recv_pkts_bulk_alloc;
- } else {
- PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are not "
- "satisfied, or Scattered Rx is requested "
- "(port=%d).",
- dev->data->port_id);
-
- dev->rx_pkt_burst = i40e_recv_pkts;
- }
-
- /* Propagate information about RX function choice through all queues. */
- if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
- rx_using_sse =
- (dev->rx_pkt_burst == i40e_recv_scattered_pkts_vec ||
- dev->rx_pkt_burst == i40e_recv_pkts_vec);
-
- for (i = 0; i < dev->data->nb_rx_queues; i++) {
- struct i40e_rx_queue *rxq = dev->data->rx_queues[i];
-
- rxq->rx_using_sse = rx_using_sse;
- }
- }
-}
-
-void __attribute__((cold))
-i40e_set_tx_function_flag(struct rte_eth_dev *dev, struct i40e_tx_queue *txq)
-{
- struct i40e_adapter *ad =
- I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
-
- /* Use a simple Tx queue (no offloads, no multi segs) if possible */
- if (((txq->txq_flags & I40E_SIMPLE_FLAGS) == I40E_SIMPLE_FLAGS)
- && (txq->tx_rs_thresh >= RTE_PMD_I40E_TX_MAX_BURST)) {
- if (txq->tx_rs_thresh <= RTE_I40E_TX_MAX_FREE_BUF_SZ) {
- PMD_INIT_LOG(DEBUG, "Vector tx"
- " can be enabled on this txq.");
-
- } else {
- ad->tx_vec_allowed = false;
- }
- } else {
- ad->tx_simple_allowed = false;
- }
-}
-
-void __attribute__((cold))
-i40e_set_tx_function(struct rte_eth_dev *dev)
-{
- struct i40e_adapter *ad =
- I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
- int i;
-
- if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
- if (ad->tx_vec_allowed) {
- for (i = 0; i < dev->data->nb_tx_queues; i++) {
- struct i40e_tx_queue *txq =
- dev->data->tx_queues[i];
-
- if (i40e_txq_vec_setup(txq)) {
- ad->tx_vec_allowed = false;
- break;
- }
- }
- }
- }
-
- if (ad->tx_simple_allowed) {
- if (ad->tx_vec_allowed) {
- PMD_INIT_LOG(DEBUG, "Vector tx finally be used.");
- dev->tx_pkt_burst = i40e_xmit_pkts_vec;
- } else {
- PMD_INIT_LOG(DEBUG, "Simple tx finally be used.");
- dev->tx_pkt_burst = i40e_xmit_pkts_simple;
- }
- } else {
- PMD_INIT_LOG(DEBUG, "Xmit tx finally be used.");
- dev->tx_pkt_burst = i40e_xmit_pkts;
- }
-}
-
-/* Stubs needed for linkage when CONFIG_RTE_I40E_INC_VECTOR is set to 'n' */
-int __attribute__((weak))
-i40e_rx_vec_dev_conf_condition_check(struct rte_eth_dev __rte_unused *dev)
-{
- return -1;
-}
-
-uint16_t __attribute__((weak))
-i40e_recv_pkts_vec(
- void __rte_unused *rx_queue,
- struct rte_mbuf __rte_unused **rx_pkts,
- uint16_t __rte_unused nb_pkts)
-{
- return 0;
-}
-
-uint16_t __attribute__((weak))
-i40e_recv_scattered_pkts_vec(
- void __rte_unused *rx_queue,
- struct rte_mbuf __rte_unused **rx_pkts,
- uint16_t __rte_unused nb_pkts)
-{
- return 0;
-}
-
-int __attribute__((weak))
-i40e_rxq_vec_setup(struct i40e_rx_queue __rte_unused *rxq)
-{
- return -1;
-}
-
-int __attribute__((weak))
-i40e_txq_vec_setup(struct i40e_tx_queue __rte_unused *txq)
-{
- return -1;
-}
-
-void __attribute__((weak))
-i40e_rx_queue_release_mbufs_vec(struct i40e_rx_queue __rte_unused*rxq)
-{
- return;
-}
-
-uint16_t __attribute__((weak))
-i40e_xmit_pkts_vec(void __rte_unused *tx_queue,
- struct rte_mbuf __rte_unused **tx_pkts,
- uint16_t __rte_unused nb_pkts)
-{
- return 0;
-}