diff options
Diffstat (limited to 'src/dpdk_lib18/librte_acl/acl_run_sse.c')
-rwxr-xr-x | src/dpdk_lib18/librte_acl/acl_run_sse.c | 626 |
1 files changed, 0 insertions, 626 deletions
diff --git a/src/dpdk_lib18/librte_acl/acl_run_sse.c b/src/dpdk_lib18/librte_acl/acl_run_sse.c deleted file mode 100755 index 69a9d775..00000000 --- a/src/dpdk_lib18/librte_acl/acl_run_sse.c +++ /dev/null @@ -1,626 +0,0 @@ -/*- - * BSD LICENSE - * - * Copyright(c) 2010-2014 Intel Corporation. All rights reserved. - * All rights reserved. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - * - * * Redistributions of source code must retain the above copyright - * notice, this list of conditions and the following disclaimer. - * * Redistributions in binary form must reproduce the above copyright - * notice, this list of conditions and the following disclaimer in - * the documentation and/or other materials provided with the - * distribution. - * * Neither the name of Intel Corporation nor the names of its - * contributors may be used to endorse or promote products derived - * from this software without specific prior written permission. - * - * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS - * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT - * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR - * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT - * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, - * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT - * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, - * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY - * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT - * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE - * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - */ - -#include "acl_run.h" - -enum { - SHUFFLE32_SLOT1 = 0xe5, - SHUFFLE32_SLOT2 = 0xe6, - SHUFFLE32_SLOT3 = 0xe7, - SHUFFLE32_SWAP64 = 0x4e, -}; - -static const rte_xmm_t mm_type_quad_range = { - .u32 = { - RTE_ACL_NODE_QRANGE, - RTE_ACL_NODE_QRANGE, - RTE_ACL_NODE_QRANGE, - RTE_ACL_NODE_QRANGE, - }, -}; - -static const rte_xmm_t mm_type_quad_range64 = { - .u32 = { - RTE_ACL_NODE_QRANGE, - RTE_ACL_NODE_QRANGE, - 0, - 0, - }, -}; - -static const rte_xmm_t mm_shuffle_input = { - .u32 = {0x00000000, 0x04040404, 0x08080808, 0x0c0c0c0c}, -}; - -static const rte_xmm_t mm_shuffle_input64 = { - .u32 = {0x00000000, 0x04040404, 0x80808080, 0x80808080}, -}; - -static const rte_xmm_t mm_ones_16 = { - .u16 = {1, 1, 1, 1, 1, 1, 1, 1}, -}; - -static const rte_xmm_t mm_bytes = { - .u32 = {UINT8_MAX, UINT8_MAX, UINT8_MAX, UINT8_MAX}, -}; - -static const rte_xmm_t mm_bytes64 = { - .u32 = {UINT8_MAX, UINT8_MAX, 0, 0}, -}; - -static const rte_xmm_t mm_match_mask = { - .u32 = { - RTE_ACL_NODE_MATCH, - RTE_ACL_NODE_MATCH, - RTE_ACL_NODE_MATCH, - RTE_ACL_NODE_MATCH, - }, -}; - -static const rte_xmm_t mm_match_mask64 = { - .u32 = { - RTE_ACL_NODE_MATCH, - 0, - RTE_ACL_NODE_MATCH, - 0, - }, -}; - -static const rte_xmm_t mm_index_mask = { - .u32 = { - RTE_ACL_NODE_INDEX, - RTE_ACL_NODE_INDEX, - RTE_ACL_NODE_INDEX, - RTE_ACL_NODE_INDEX, - }, -}; - -static const rte_xmm_t mm_index_mask64 = { - .u32 = { - RTE_ACL_NODE_INDEX, - RTE_ACL_NODE_INDEX, - 0, - 0, - }, -}; - - -/* - * Resolve priority for multiple results (sse version). - * This consists comparing the priority of the current traversal with the - * running set of results for the packet. - * For each result, keep a running array of the result (rule number) and - * its priority for each category. - */ -static inline void -resolve_priority_sse(uint64_t transition, int n, const struct rte_acl_ctx *ctx, - struct parms *parms, const struct rte_acl_match_results *p, - uint32_t categories) -{ - uint32_t x; - xmm_t results, priority, results1, priority1, selector; - xmm_t *saved_results, *saved_priority; - - for (x = 0; x < categories; x += RTE_ACL_RESULTS_MULTIPLIER) { - - saved_results = (xmm_t *)(&parms[n].cmplt->results[x]); - saved_priority = - (xmm_t *)(&parms[n].cmplt->priority[x]); - - /* get results and priorities for completed trie */ - results = MM_LOADU((const xmm_t *)&p[transition].results[x]); - priority = MM_LOADU((const xmm_t *)&p[transition].priority[x]); - - /* if this is not the first completed trie */ - if (parms[n].cmplt->count != ctx->num_tries) { - - /* get running best results and their priorities */ - results1 = MM_LOADU(saved_results); - priority1 = MM_LOADU(saved_priority); - - /* select results that are highest priority */ - selector = MM_CMPGT32(priority1, priority); - results = MM_BLENDV8(results, results1, selector); - priority = MM_BLENDV8(priority, priority1, selector); - } - - /* save running best results and their priorities */ - MM_STOREU(saved_results, results); - MM_STOREU(saved_priority, priority); - } -} - -/* - * Extract transitions from an XMM register and check for any matches - */ -static void -acl_process_matches(xmm_t *indices, int slot, const struct rte_acl_ctx *ctx, - struct parms *parms, struct acl_flow_data *flows) -{ - uint64_t transition1, transition2; - - /* extract transition from low 64 bits. */ - transition1 = MM_CVT64(*indices); - - /* extract transition from high 64 bits. */ - *indices = MM_SHUFFLE32(*indices, SHUFFLE32_SWAP64); - transition2 = MM_CVT64(*indices); - - transition1 = acl_match_check(transition1, slot, ctx, - parms, flows, resolve_priority_sse); - transition2 = acl_match_check(transition2, slot + 1, ctx, - parms, flows, resolve_priority_sse); - - /* update indices with new transitions. */ - *indices = MM_SET64(transition2, transition1); -} - -/* - * Check for a match in 2 transitions (contained in SSE register) - */ -static inline void -acl_match_check_x2(int slot, const struct rte_acl_ctx *ctx, struct parms *parms, - struct acl_flow_data *flows, xmm_t *indices, xmm_t match_mask) -{ - xmm_t temp; - - temp = MM_AND(match_mask, *indices); - while (!MM_TESTZ(temp, temp)) { - acl_process_matches(indices, slot, ctx, parms, flows); - temp = MM_AND(match_mask, *indices); - } -} - -/* - * Check for any match in 4 transitions (contained in 2 SSE registers) - */ -static inline void -acl_match_check_x4(int slot, const struct rte_acl_ctx *ctx, struct parms *parms, - struct acl_flow_data *flows, xmm_t *indices1, xmm_t *indices2, - xmm_t match_mask) -{ - xmm_t temp; - - /* put low 32 bits of each transition into one register */ - temp = (xmm_t)MM_SHUFFLEPS((__m128)*indices1, (__m128)*indices2, - 0x88); - /* test for match node */ - temp = MM_AND(match_mask, temp); - - while (!MM_TESTZ(temp, temp)) { - acl_process_matches(indices1, slot, ctx, parms, flows); - acl_process_matches(indices2, slot + 2, ctx, parms, flows); - - temp = (xmm_t)MM_SHUFFLEPS((__m128)*indices1, - (__m128)*indices2, - 0x88); - temp = MM_AND(match_mask, temp); - } -} - -/* - * Calculate the address of the next transition for - * all types of nodes. Note that only DFA nodes and range - * nodes actually transition to another node. Match - * nodes don't move. - */ -static inline xmm_t -acl_calc_addr(xmm_t index_mask, xmm_t next_input, xmm_t shuffle_input, - xmm_t ones_16, xmm_t bytes, xmm_t type_quad_range, - xmm_t *indices1, xmm_t *indices2) -{ - xmm_t addr, node_types, temp; - - /* - * Note that no transition is done for a match - * node and therefore a stream freezes when - * it reaches a match. - */ - - /* Shuffle low 32 into temp and high 32 into indices2 */ - temp = (xmm_t)MM_SHUFFLEPS((__m128)*indices1, (__m128)*indices2, - 0x88); - *indices2 = (xmm_t)MM_SHUFFLEPS((__m128)*indices1, - (__m128)*indices2, 0xdd); - - /* Calc node type and node addr */ - node_types = MM_ANDNOT(index_mask, temp); - addr = MM_AND(index_mask, temp); - - /* - * Calc addr for DFAs - addr = dfa_index + input_byte - */ - - /* mask for DFA type (0) nodes */ - temp = MM_CMPEQ32(node_types, MM_XOR(node_types, node_types)); - - /* add input byte to DFA position */ - temp = MM_AND(temp, bytes); - temp = MM_AND(temp, next_input); - addr = MM_ADD32(addr, temp); - - /* - * Calc addr for Range nodes -> range_index + range(input) - */ - node_types = MM_CMPEQ32(node_types, type_quad_range); - - /* - * Calculate number of range boundaries that are less than the - * input value. Range boundaries for each node are in signed 8 bit, - * ordered from -128 to 127 in the indices2 register. - * This is effectively a popcnt of bytes that are greater than the - * input byte. - */ - - /* shuffle input byte to all 4 positions of 32 bit value */ - temp = MM_SHUFFLE8(next_input, shuffle_input); - - /* check ranges */ - temp = MM_CMPGT8(temp, *indices2); - - /* convert -1 to 1 (bytes greater than input byte */ - temp = MM_SIGN8(temp, temp); - - /* horizontal add pairs of bytes into words */ - temp = MM_MADD8(temp, temp); - - /* horizontal add pairs of words into dwords */ - temp = MM_MADD16(temp, ones_16); - - /* mask to range type nodes */ - temp = MM_AND(temp, node_types); - - /* add index into node position */ - return MM_ADD32(addr, temp); -} - -/* - * Process 4 transitions (in 2 SIMD registers) in parallel - */ -static inline xmm_t -transition4(xmm_t index_mask, xmm_t next_input, xmm_t shuffle_input, - xmm_t ones_16, xmm_t bytes, xmm_t type_quad_range, - const uint64_t *trans, xmm_t *indices1, xmm_t *indices2) -{ - xmm_t addr; - uint64_t trans0, trans2; - - /* Calculate the address (array index) for all 4 transitions. */ - - addr = acl_calc_addr(index_mask, next_input, shuffle_input, ones_16, - bytes, type_quad_range, indices1, indices2); - - /* Gather 64 bit transitions and pack back into 2 registers. */ - - trans0 = trans[MM_CVT32(addr)]; - - /* get slot 2 */ - - /* {x0, x1, x2, x3} -> {x2, x1, x2, x3} */ - addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT2); - trans2 = trans[MM_CVT32(addr)]; - - /* get slot 1 */ - - /* {x2, x1, x2, x3} -> {x1, x1, x2, x3} */ - addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT1); - *indices1 = MM_SET64(trans[MM_CVT32(addr)], trans0); - - /* get slot 3 */ - - /* {x1, x1, x2, x3} -> {x3, x1, x2, x3} */ - addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT3); - *indices2 = MM_SET64(trans[MM_CVT32(addr)], trans2); - - return MM_SRL32(next_input, 8); -} - -/* - * Execute trie traversal with 8 traversals in parallel - */ -static inline int -search_sse_8(const struct rte_acl_ctx *ctx, const uint8_t **data, - uint32_t *results, uint32_t total_packets, uint32_t categories) -{ - int n; - struct acl_flow_data flows; - uint64_t index_array[MAX_SEARCHES_SSE8]; - struct completion cmplt[MAX_SEARCHES_SSE8]; - struct parms parms[MAX_SEARCHES_SSE8]; - xmm_t input0, input1; - xmm_t indices1, indices2, indices3, indices4; - - acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results, - total_packets, categories, ctx->trans_table); - - for (n = 0; n < MAX_SEARCHES_SSE8; n++) { - cmplt[n].count = 0; - index_array[n] = acl_start_next_trie(&flows, parms, n, ctx); - } - - /* - * indices1 contains index_array[0,1] - * indices2 contains index_array[2,3] - * indices3 contains index_array[4,5] - * indices4 contains index_array[6,7] - */ - - indices1 = MM_LOADU((xmm_t *) &index_array[0]); - indices2 = MM_LOADU((xmm_t *) &index_array[2]); - - indices3 = MM_LOADU((xmm_t *) &index_array[4]); - indices4 = MM_LOADU((xmm_t *) &index_array[6]); - - /* Check for any matches. */ - acl_match_check_x4(0, ctx, parms, &flows, - &indices1, &indices2, mm_match_mask.m); - acl_match_check_x4(4, ctx, parms, &flows, - &indices3, &indices4, mm_match_mask.m); - - while (flows.started > 0) { - - /* Gather 4 bytes of input data for each stream. */ - input0 = MM_INSERT32(mm_ones_16.m, GET_NEXT_4BYTES(parms, 0), - 0); - input1 = MM_INSERT32(mm_ones_16.m, GET_NEXT_4BYTES(parms, 4), - 0); - - input0 = MM_INSERT32(input0, GET_NEXT_4BYTES(parms, 1), 1); - input1 = MM_INSERT32(input1, GET_NEXT_4BYTES(parms, 5), 1); - - input0 = MM_INSERT32(input0, GET_NEXT_4BYTES(parms, 2), 2); - input1 = MM_INSERT32(input1, GET_NEXT_4BYTES(parms, 6), 2); - - input0 = MM_INSERT32(input0, GET_NEXT_4BYTES(parms, 3), 3); - input1 = MM_INSERT32(input1, GET_NEXT_4BYTES(parms, 7), 3); - - /* Process the 4 bytes of input on each stream. */ - - input0 = transition4(mm_index_mask.m, input0, - mm_shuffle_input.m, mm_ones_16.m, - mm_bytes.m, mm_type_quad_range.m, - flows.trans, &indices1, &indices2); - - input1 = transition4(mm_index_mask.m, input1, - mm_shuffle_input.m, mm_ones_16.m, - mm_bytes.m, mm_type_quad_range.m, - flows.trans, &indices3, &indices4); - - input0 = transition4(mm_index_mask.m, input0, - mm_shuffle_input.m, mm_ones_16.m, - mm_bytes.m, mm_type_quad_range.m, - flows.trans, &indices1, &indices2); - - input1 = transition4(mm_index_mask.m, input1, - mm_shuffle_input.m, mm_ones_16.m, - mm_bytes.m, mm_type_quad_range.m, - flows.trans, &indices3, &indices4); - - input0 = transition4(mm_index_mask.m, input0, - mm_shuffle_input.m, mm_ones_16.m, - mm_bytes.m, mm_type_quad_range.m, - flows.trans, &indices1, &indices2); - - input1 = transition4(mm_index_mask.m, input1, - mm_shuffle_input.m, mm_ones_16.m, - mm_bytes.m, mm_type_quad_range.m, - flows.trans, &indices3, &indices4); - - input0 = transition4(mm_index_mask.m, input0, - mm_shuffle_input.m, mm_ones_16.m, - mm_bytes.m, mm_type_quad_range.m, - flows.trans, &indices1, &indices2); - - input1 = transition4(mm_index_mask.m, input1, - mm_shuffle_input.m, mm_ones_16.m, - mm_bytes.m, mm_type_quad_range.m, - flows.trans, &indices3, &indices4); - - /* Check for any matches. */ - acl_match_check_x4(0, ctx, parms, &flows, - &indices1, &indices2, mm_match_mask.m); - acl_match_check_x4(4, ctx, parms, &flows, - &indices3, &indices4, mm_match_mask.m); - } - - return 0; -} - -/* - * Execute trie traversal with 4 traversals in parallel - */ -static inline int -search_sse_4(const struct rte_acl_ctx *ctx, const uint8_t **data, - uint32_t *results, int total_packets, uint32_t categories) -{ - int n; - struct acl_flow_data flows; - uint64_t index_array[MAX_SEARCHES_SSE4]; - struct completion cmplt[MAX_SEARCHES_SSE4]; - struct parms parms[MAX_SEARCHES_SSE4]; - xmm_t input, indices1, indices2; - - acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results, - total_packets, categories, ctx->trans_table); - - for (n = 0; n < MAX_SEARCHES_SSE4; n++) { - cmplt[n].count = 0; - index_array[n] = acl_start_next_trie(&flows, parms, n, ctx); - } - - indices1 = MM_LOADU((xmm_t *) &index_array[0]); - indices2 = MM_LOADU((xmm_t *) &index_array[2]); - - /* Check for any matches. */ - acl_match_check_x4(0, ctx, parms, &flows, - &indices1, &indices2, mm_match_mask.m); - - while (flows.started > 0) { - - /* Gather 4 bytes of input data for each stream. */ - input = MM_INSERT32(mm_ones_16.m, GET_NEXT_4BYTES(parms, 0), 0); - input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 1), 1); - input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 2), 2); - input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 3), 3); - - /* Process the 4 bytes of input on each stream. */ - input = transition4(mm_index_mask.m, input, - mm_shuffle_input.m, mm_ones_16.m, - mm_bytes.m, mm_type_quad_range.m, - flows.trans, &indices1, &indices2); - - input = transition4(mm_index_mask.m, input, - mm_shuffle_input.m, mm_ones_16.m, - mm_bytes.m, mm_type_quad_range.m, - flows.trans, &indices1, &indices2); - - input = transition4(mm_index_mask.m, input, - mm_shuffle_input.m, mm_ones_16.m, - mm_bytes.m, mm_type_quad_range.m, - flows.trans, &indices1, &indices2); - - input = transition4(mm_index_mask.m, input, - mm_shuffle_input.m, mm_ones_16.m, - mm_bytes.m, mm_type_quad_range.m, - flows.trans, &indices1, &indices2); - - /* Check for any matches. */ - acl_match_check_x4(0, ctx, parms, &flows, - &indices1, &indices2, mm_match_mask.m); - } - - return 0; -} - -static inline xmm_t -transition2(xmm_t index_mask, xmm_t next_input, xmm_t shuffle_input, - xmm_t ones_16, xmm_t bytes, xmm_t type_quad_range, - const uint64_t *trans, xmm_t *indices1) -{ - uint64_t t; - xmm_t addr, indices2; - - indices2 = MM_XOR(ones_16, ones_16); - - addr = acl_calc_addr(index_mask, next_input, shuffle_input, ones_16, - bytes, type_quad_range, indices1, &indices2); - - /* Gather 64 bit transitions and pack 2 per register. */ - - t = trans[MM_CVT32(addr)]; - - /* get slot 1 */ - addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT1); - *indices1 = MM_SET64(trans[MM_CVT32(addr)], t); - - return MM_SRL32(next_input, 8); -} - -/* - * Execute trie traversal with 2 traversals in parallel. - */ -static inline int -search_sse_2(const struct rte_acl_ctx *ctx, const uint8_t **data, - uint32_t *results, uint32_t total_packets, uint32_t categories) -{ - int n; - struct acl_flow_data flows; - uint64_t index_array[MAX_SEARCHES_SSE2]; - struct completion cmplt[MAX_SEARCHES_SSE2]; - struct parms parms[MAX_SEARCHES_SSE2]; - xmm_t input, indices; - - acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results, - total_packets, categories, ctx->trans_table); - - for (n = 0; n < MAX_SEARCHES_SSE2; n++) { - cmplt[n].count = 0; - index_array[n] = acl_start_next_trie(&flows, parms, n, ctx); - } - - indices = MM_LOADU((xmm_t *) &index_array[0]); - - /* Check for any matches. */ - acl_match_check_x2(0, ctx, parms, &flows, &indices, mm_match_mask64.m); - - while (flows.started > 0) { - - /* Gather 4 bytes of input data for each stream. */ - input = MM_INSERT32(mm_ones_16.m, GET_NEXT_4BYTES(parms, 0), 0); - input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 1), 1); - - /* Process the 4 bytes of input on each stream. */ - - input = transition2(mm_index_mask64.m, input, - mm_shuffle_input64.m, mm_ones_16.m, - mm_bytes64.m, mm_type_quad_range64.m, - flows.trans, &indices); - - input = transition2(mm_index_mask64.m, input, - mm_shuffle_input64.m, mm_ones_16.m, - mm_bytes64.m, mm_type_quad_range64.m, - flows.trans, &indices); - - input = transition2(mm_index_mask64.m, input, - mm_shuffle_input64.m, mm_ones_16.m, - mm_bytes64.m, mm_type_quad_range64.m, - flows.trans, &indices); - - input = transition2(mm_index_mask64.m, input, - mm_shuffle_input64.m, mm_ones_16.m, - mm_bytes64.m, mm_type_quad_range64.m, - flows.trans, &indices); - - /* Check for any matches. */ - acl_match_check_x2(0, ctx, parms, &flows, &indices, - mm_match_mask64.m); - } - - return 0; -} - -int -rte_acl_classify_sse(const struct rte_acl_ctx *ctx, const uint8_t **data, - uint32_t *results, uint32_t num, uint32_t categories) -{ - if (categories != 1 && - ((RTE_ACL_RESULTS_MULTIPLIER - 1) & categories) != 0) - return -EINVAL; - - if (likely(num >= MAX_SEARCHES_SSE8)) - return search_sse_8(ctx, data, results, num, categories); - else if (num >= MAX_SEARCHES_SSE4) - return search_sse_4(ctx, data, results, num, categories); - else - return search_sse_2(ctx, data, results, num, categories); -} |