summaryrefslogtreecommitdiffstats
path: root/src/dpdk_lib18/librte_eal/linuxapp/eal/eal_ivshmem.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/dpdk_lib18/librte_eal/linuxapp/eal/eal_ivshmem.c')
-rwxr-xr-xsrc/dpdk_lib18/librte_eal/linuxapp/eal/eal_ivshmem.c968
1 files changed, 968 insertions, 0 deletions
diff --git a/src/dpdk_lib18/librte_eal/linuxapp/eal/eal_ivshmem.c b/src/dpdk_lib18/librte_eal/linuxapp/eal/eal_ivshmem.c
new file mode 100755
index 00000000..413a9bae
--- /dev/null
+++ b/src/dpdk_lib18/librte_eal/linuxapp/eal/eal_ivshmem.c
@@ -0,0 +1,968 @@
+/*-
+ * BSD LICENSE
+ *
+ * Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ * * Neither the name of Intel Corporation nor the names of its
+ * contributors may be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#ifdef RTE_LIBRTE_IVSHMEM /* hide it from coverage */
+
+#include <stdint.h>
+#include <unistd.h>
+#include <inttypes.h>
+#include <sys/mman.h>
+#include <sys/file.h>
+#include <string.h>
+#include <sys/queue.h>
+
+#include <rte_log.h>
+#include <rte_pci.h>
+#include <rte_memory.h>
+#include <rte_eal.h>
+#include <rte_eal_memconfig.h>
+#include <rte_string_fns.h>
+#include <rte_errno.h>
+#include <rte_ring.h>
+#include <rte_mempool.h>
+#include <rte_malloc.h>
+#include <rte_common.h>
+#include <rte_ivshmem.h>
+#include <rte_tailq_elem.h>
+
+#include "eal_internal_cfg.h"
+#include "eal_private.h"
+
+#define PCI_VENDOR_ID_IVSHMEM 0x1Af4
+#define PCI_DEVICE_ID_IVSHMEM 0x1110
+
+#define IVSHMEM_MAGIC 0x0BADC0DE
+
+#define IVSHMEM_RESOURCE_PATH "/sys/bus/pci/devices/%04x:%02x:%02x.%x/resource2"
+#define IVSHMEM_CONFIG_PATH "/var/run/.%s_ivshmem_config"
+
+#define PHYS 0x1
+#define VIRT 0x2
+#define IOREMAP 0x4
+#define FULL (PHYS|VIRT|IOREMAP)
+
+#define METADATA_SIZE_ALIGNED \
+ (RTE_ALIGN_CEIL(sizeof(struct rte_ivshmem_metadata),pagesz))
+
+#define CONTAINS(x,y)\
+ (((y).addr_64 >= (x).addr_64) && ((y).addr_64 < (x).addr_64 + (x).len))
+
+#define DIM(x) (sizeof(x)/sizeof(x[0]))
+
+struct ivshmem_pci_device {
+ char path[PATH_MAX];
+ phys_addr_t ioremap_addr;
+};
+
+/* data type to store in config */
+struct ivshmem_segment {
+ struct rte_ivshmem_metadata_entry entry;
+ uint64_t align;
+ char path[PATH_MAX];
+};
+struct ivshmem_shared_config {
+ struct ivshmem_segment segment[RTE_MAX_MEMSEG];
+ uint32_t segment_idx;
+ struct ivshmem_pci_device pci_devs[RTE_LIBRTE_IVSHMEM_MAX_PCI_DEVS];
+ uint32_t pci_devs_idx;
+};
+static struct ivshmem_shared_config * ivshmem_config;
+static int memseg_idx;
+static int pagesz;
+
+/* Tailq heads to add rings to */
+TAILQ_HEAD(rte_ring_list, rte_tailq_entry);
+
+/*
+ * Utility functions
+ */
+
+static int
+is_ivshmem_device(struct rte_pci_device * dev)
+{
+ return (dev->id.vendor_id == PCI_VENDOR_ID_IVSHMEM
+ && dev->id.device_id == PCI_DEVICE_ID_IVSHMEM);
+}
+
+static void *
+map_metadata(int fd, uint64_t len)
+{
+ size_t metadata_len = sizeof(struct rte_ivshmem_metadata);
+ size_t aligned_len = METADATA_SIZE_ALIGNED;
+
+ return mmap(NULL, metadata_len, PROT_READ | PROT_WRITE,
+ MAP_SHARED, fd, len - aligned_len);
+}
+
+static void
+unmap_metadata(void * ptr)
+{
+ munmap(ptr, sizeof(struct rte_ivshmem_metadata));
+}
+
+static int
+has_ivshmem_metadata(int fd, uint64_t len)
+{
+ struct rte_ivshmem_metadata metadata;
+ void * ptr;
+
+ ptr = map_metadata(fd, len);
+
+ if (ptr == MAP_FAILED)
+ return -1;
+
+ metadata = *(struct rte_ivshmem_metadata*) (ptr);
+
+ unmap_metadata(ptr);
+
+ return metadata.magic_number == IVSHMEM_MAGIC;
+}
+
+static void
+remove_segment(struct ivshmem_segment * ms, int len, int idx)
+{
+ int i;
+
+ for (i = idx; i < len - 1; i++)
+ memcpy(&ms[i], &ms[i+1], sizeof(struct ivshmem_segment));
+ memset(&ms[len-1], 0, sizeof(struct ivshmem_segment));
+}
+
+static int
+overlap(const struct rte_memzone * mz1, const struct rte_memzone * mz2)
+{
+ uint64_t start1, end1, start2, end2;
+ uint64_t p_start1, p_end1, p_start2, p_end2;
+ uint64_t i_start1, i_end1, i_start2, i_end2;
+ int result = 0;
+
+ /* gather virtual addresses */
+ start1 = mz1->addr_64;
+ end1 = mz1->addr_64 + mz1->len;
+ start2 = mz2->addr_64;
+ end2 = mz2->addr_64 + mz2->len;
+
+ /* gather physical addresses */
+ p_start1 = mz1->phys_addr;
+ p_end1 = mz1->phys_addr + mz1->len;
+ p_start2 = mz2->phys_addr;
+ p_end2 = mz2->phys_addr + mz2->len;
+
+ /* gather ioremap addresses */
+ i_start1 = mz1->ioremap_addr;
+ i_end1 = mz1->ioremap_addr + mz1->len;
+ i_start2 = mz2->ioremap_addr;
+ i_end2 = mz2->ioremap_addr + mz2->len;
+
+ /* check for overlap in virtual addresses */
+ if (start1 >= start2 && start1 < end2)
+ result |= VIRT;
+ if (start2 >= start1 && start2 < end1)
+ result |= VIRT;
+
+ /* check for overlap in physical addresses */
+ if (p_start1 >= p_start2 && p_start1 < p_end2)
+ result |= PHYS;
+ if (p_start2 >= p_start1 && p_start2 < p_end1)
+ result |= PHYS;
+
+ /* check for overlap in ioremap addresses */
+ if (i_start1 >= i_start2 && i_start1 < i_end2)
+ result |= IOREMAP;
+ if (i_start2 >= i_start1 && i_start2 < i_end1)
+ result |= IOREMAP;
+
+ return result;
+}
+
+static int
+adjacent(const struct rte_memzone * mz1, const struct rte_memzone * mz2)
+{
+ uint64_t start1, end1, start2, end2;
+ uint64_t p_start1, p_end1, p_start2, p_end2;
+ uint64_t i_start1, i_end1, i_start2, i_end2;
+ int result = 0;
+
+ /* gather virtual addresses */
+ start1 = mz1->addr_64;
+ end1 = mz1->addr_64 + mz1->len;
+ start2 = mz2->addr_64;
+ end2 = mz2->addr_64 + mz2->len;
+
+ /* gather physical addresses */
+ p_start1 = mz1->phys_addr;
+ p_end1 = mz1->phys_addr + mz1->len;
+ p_start2 = mz2->phys_addr;
+ p_end2 = mz2->phys_addr + mz2->len;
+
+ /* gather ioremap addresses */
+ i_start1 = mz1->ioremap_addr;
+ i_end1 = mz1->ioremap_addr + mz1->len;
+ i_start2 = mz2->ioremap_addr;
+ i_end2 = mz2->ioremap_addr + mz2->len;
+
+ /* check if segments are virtually adjacent */
+ if (start1 == end2)
+ result |= VIRT;
+ if (start2 == end1)
+ result |= VIRT;
+
+ /* check if segments are physically adjacent */
+ if (p_start1 == p_end2)
+ result |= PHYS;
+ if (p_start2 == p_end1)
+ result |= PHYS;
+
+ /* check if segments are ioremap-adjacent */
+ if (i_start1 == i_end2)
+ result |= IOREMAP;
+ if (i_start2 == i_end1)
+ result |= IOREMAP;
+
+ return result;
+}
+
+static int
+has_adjacent_segments(struct ivshmem_segment * ms, int len)
+{
+ int i, j, a;
+
+ for (i = 0; i < len; i++)
+ for (j = i + 1; j < len; j++) {
+ a = adjacent(&ms[i].entry.mz, &ms[j].entry.mz);
+
+ /* check if segments are adjacent virtually and/or physically but
+ * not ioremap (since that would indicate that they are from
+ * different PCI devices and thus don't need to be concatenated.
+ */
+ if ((a & (VIRT|PHYS)) > 0 && (a & IOREMAP) == 0)
+ return 1;
+ }
+ return 0;
+}
+
+static int
+has_overlapping_segments(struct ivshmem_segment * ms, int len)
+{
+ int i, j;
+
+ for (i = 0; i < len; i++)
+ for (j = i + 1; j < len; j++)
+ if (overlap(&ms[i].entry.mz, &ms[j].entry.mz))
+ return 1;
+ return 0;
+}
+
+static int
+seg_compare(const void * a, const void * b)
+{
+ const struct ivshmem_segment * s1 = (const struct ivshmem_segment*) a;
+ const struct ivshmem_segment * s2 = (const struct ivshmem_segment*) b;
+
+ /* move unallocated zones to the end */
+ if (s1->entry.mz.addr == NULL && s2->entry.mz.addr == NULL)
+ return 0;
+ if (s1->entry.mz.addr == 0)
+ return 1;
+ if (s2->entry.mz.addr == 0)
+ return -1;
+
+ return s1->entry.mz.phys_addr > s2->entry.mz.phys_addr;
+}
+
+#ifdef RTE_LIBRTE_IVSHMEM_DEBUG
+static void
+entry_dump(struct rte_ivshmem_metadata_entry *e)
+{
+ RTE_LOG(DEBUG, EAL, "\tvirt: %p-%p\n", e->mz.addr,
+ RTE_PTR_ADD(e->mz.addr, e->mz.len));
+ RTE_LOG(DEBUG, EAL, "\tphys: 0x%" PRIx64 "-0x%" PRIx64 "\n",
+ e->mz.phys_addr,
+ e->mz.phys_addr + e->mz.len);
+ RTE_LOG(DEBUG, EAL, "\tio: 0x%" PRIx64 "-0x%" PRIx64 "\n",
+ e->mz.ioremap_addr,
+ e->mz.ioremap_addr + e->mz.len);
+ RTE_LOG(DEBUG, EAL, "\tlen: 0x%" PRIx64 "\n", e->mz.len);
+ RTE_LOG(DEBUG, EAL, "\toff: 0x%" PRIx64 "\n", e->offset);
+}
+#endif
+
+
+
+/*
+ * Actual useful code
+ */
+
+/* read through metadata mapped from the IVSHMEM device */
+static int
+read_metadata(char * path, int path_len, int fd, uint64_t flen)
+{
+ struct rte_ivshmem_metadata metadata;
+ struct rte_ivshmem_metadata_entry * entry;
+ int idx, i;
+ void * ptr;
+
+ ptr = map_metadata(fd, flen);
+
+ if (ptr == MAP_FAILED)
+ return -1;
+
+ metadata = *(struct rte_ivshmem_metadata*) (ptr);
+
+ unmap_metadata(ptr);
+
+ RTE_LOG(DEBUG, EAL, "Parsing metadata for \"%s\"\n", metadata.name);
+
+ idx = ivshmem_config->segment_idx;
+
+ for (i = 0; i < RTE_LIBRTE_IVSHMEM_MAX_ENTRIES &&
+ idx <= RTE_MAX_MEMSEG; i++) {
+
+ if (idx == RTE_MAX_MEMSEG) {
+ RTE_LOG(ERR, EAL, "Not enough memory segments!\n");
+ return -1;
+ }
+
+ entry = &metadata.entry[i];
+
+ /* stop on uninitialized memzone */
+ if (entry->mz.len == 0)
+ break;
+
+ /* copy metadata entry */
+ memcpy(&ivshmem_config->segment[idx].entry, entry,
+ sizeof(struct rte_ivshmem_metadata_entry));
+
+ /* copy path */
+ snprintf(ivshmem_config->segment[idx].path, path_len, "%s", path);
+
+ idx++;
+ }
+ ivshmem_config->segment_idx = idx;
+
+ return 0;
+}
+
+/* check through each segment and look for adjacent or overlapping ones. */
+static int
+cleanup_segments(struct ivshmem_segment * ms, int tbl_len)
+{
+ struct ivshmem_segment * s, * tmp;
+ int i, j, concat, seg_adjacent, seg_overlapping;
+ uint64_t start1, start2, end1, end2, p_start1, p_start2, i_start1, i_start2;
+
+ qsort(ms, tbl_len, sizeof(struct ivshmem_segment),
+ seg_compare);
+
+ while (has_overlapping_segments(ms, tbl_len) ||
+ has_adjacent_segments(ms, tbl_len)) {
+
+ for (i = 0; i < tbl_len; i++) {
+ s = &ms[i];
+
+ concat = 0;
+
+ for (j = i + 1; j < tbl_len; j++) {
+ tmp = &ms[j];
+
+ /* check if this segment is overlapping with existing segment,
+ * or is adjacent to existing segment */
+ seg_overlapping = overlap(&s->entry.mz, &tmp->entry.mz);
+ seg_adjacent = adjacent(&s->entry.mz, &tmp->entry.mz);
+
+ /* check if segments fully overlap or are fully adjacent */
+ if ((seg_adjacent == FULL) || (seg_overlapping == FULL)) {
+
+#ifdef RTE_LIBRTE_IVSHMEM_DEBUG
+ RTE_LOG(DEBUG, EAL, "Concatenating segments\n");
+ RTE_LOG(DEBUG, EAL, "Segment %i:\n", i);
+ entry_dump(&s->entry);
+ RTE_LOG(DEBUG, EAL, "Segment %i:\n", j);
+ entry_dump(&tmp->entry);
+#endif
+
+ start1 = s->entry.mz.addr_64;
+ start2 = tmp->entry.mz.addr_64;
+ p_start1 = s->entry.mz.phys_addr;
+ p_start2 = tmp->entry.mz.phys_addr;
+ i_start1 = s->entry.mz.ioremap_addr;
+ i_start2 = tmp->entry.mz.ioremap_addr;
+ end1 = s->entry.mz.addr_64 + s->entry.mz.len;
+ end2 = tmp->entry.mz.addr_64 + tmp->entry.mz.len;
+
+ /* settle for minimum start address and maximum length */
+ s->entry.mz.addr_64 = RTE_MIN(start1, start2);
+ s->entry.mz.phys_addr = RTE_MIN(p_start1, p_start2);
+ s->entry.mz.ioremap_addr = RTE_MIN(i_start1, i_start2);
+ s->entry.offset = RTE_MIN(s->entry.offset, tmp->entry.offset);
+ s->entry.mz.len = RTE_MAX(end1, end2) - s->entry.mz.addr_64;
+ concat = 1;
+
+#ifdef RTE_LIBRTE_IVSHMEM_DEBUG
+ RTE_LOG(DEBUG, EAL, "Resulting segment:\n");
+ entry_dump(&s->entry);
+
+#endif
+ }
+ /* if segments not fully overlap, we have an error condition.
+ * adjacent segments can coexist.
+ */
+ else if (seg_overlapping > 0) {
+ RTE_LOG(ERR, EAL, "Segments %i and %i overlap!\n", i, j);
+#ifdef RTE_LIBRTE_IVSHMEM_DEBUG
+ RTE_LOG(DEBUG, EAL, "Segment %i:\n", i);
+ entry_dump(&s->entry);
+ RTE_LOG(DEBUG, EAL, "Segment %i:\n", j);
+ entry_dump(&tmp->entry);
+#endif
+ return -1;
+ }
+ if (concat)
+ break;
+ }
+ /* if we concatenated, remove segment at j */
+ if (concat) {
+ remove_segment(ms, tbl_len, j);
+ tbl_len--;
+ break;
+ }
+ }
+ }
+
+ return tbl_len;
+}
+
+static int
+create_shared_config(void)
+{
+ char path[PATH_MAX];
+ int fd;
+
+ /* build ivshmem config file path */
+ snprintf(path, sizeof(path), IVSHMEM_CONFIG_PATH,
+ internal_config.hugefile_prefix);
+
+ fd = open(path, O_CREAT | O_RDWR, 0600);
+
+ if (fd < 0) {
+ RTE_LOG(ERR, EAL, "Could not open %s: %s\n", path, strerror(errno));
+ return -1;
+ }
+
+ /* try ex-locking first - if the file is locked, we have a problem */
+ if (flock(fd, LOCK_EX | LOCK_NB) == -1) {
+ RTE_LOG(ERR, EAL, "Locking %s failed: %s\n", path, strerror(errno));
+ close(fd);
+ return -1;
+ }
+
+ if (ftruncate(fd, sizeof(struct ivshmem_shared_config)) < 0) {
+ RTE_LOG(ERR, EAL, "ftruncate failed: %s\n", strerror(errno));
+ return -1;
+ }
+
+ ivshmem_config = mmap(NULL, sizeof(struct ivshmem_shared_config),
+ PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
+
+ if (ivshmem_config == MAP_FAILED)
+ return -1;
+
+ memset(ivshmem_config, 0, sizeof(struct ivshmem_shared_config));
+
+ /* change the exclusive lock we got earlier to a shared lock */
+ if (flock(fd, LOCK_SH | LOCK_NB) == -1) {
+ RTE_LOG(ERR, EAL, "Locking %s failed: %s \n", path, strerror(errno));
+ return -1;
+ }
+
+ close(fd);
+
+ return 0;
+}
+
+/* open shared config file and, if present, map the config.
+ * having no config file is not an error condition, as we later check if
+ * ivshmem_config is NULL (if it is, that means nothing was mapped). */
+static int
+open_shared_config(void)
+{
+ char path[PATH_MAX];
+ int fd;
+
+ /* build ivshmem config file path */
+ snprintf(path, sizeof(path), IVSHMEM_CONFIG_PATH,
+ internal_config.hugefile_prefix);
+
+ fd = open(path, O_RDONLY);
+
+ /* if the file doesn't exist, just return success */
+ if (fd < 0 && errno == ENOENT)
+ return 0;
+ /* else we have an error condition */
+ else if (fd < 0) {
+ RTE_LOG(ERR, EAL, "Could not open %s: %s\n",
+ path, strerror(errno));
+ return -1;
+ }
+
+ /* try ex-locking first - if the lock *does* succeed, this means it's a
+ * stray config file, so it should be deleted.
+ */
+ if (flock(fd, LOCK_EX | LOCK_NB) != -1) {
+
+ /* if we can't remove the file, something is wrong */
+ if (unlink(path) < 0) {
+ RTE_LOG(ERR, EAL, "Could not remove %s: %s\n", path,
+ strerror(errno));
+ return -1;
+ }
+
+ /* release the lock */
+ flock(fd, LOCK_UN);
+ close(fd);
+
+ /* return success as having a stray config file is equivalent to not
+ * having config file at all.
+ */
+ return 0;
+ }
+
+ ivshmem_config = mmap(NULL, sizeof(struct ivshmem_shared_config),
+ PROT_READ, MAP_SHARED, fd, 0);
+
+ if (ivshmem_config == MAP_FAILED)
+ return -1;
+
+ /* place a shared lock on config file */
+ if (flock(fd, LOCK_SH | LOCK_NB) == -1) {
+ RTE_LOG(ERR, EAL, "Locking %s failed: %s \n", path, strerror(errno));
+ return -1;
+ }
+
+ close(fd);
+
+ return 0;
+}
+
+/*
+ * This function does the following:
+ *
+ * 1) Builds a table of ivshmem_segments with proper offset alignment
+ * 2) Cleans up that table so that we don't have any overlapping or adjacent
+ * memory segments
+ * 3) Creates memsegs from this table and maps them into memory.
+ */
+static inline int
+map_all_segments(void)
+{
+ struct ivshmem_segment ms_tbl[RTE_MAX_MEMSEG];
+ struct ivshmem_pci_device * pci_dev;
+ struct rte_mem_config * mcfg;
+ struct ivshmem_segment * seg;
+ int fd, fd_zero;
+ unsigned i, j;
+ struct rte_memzone mz;
+ struct rte_memseg ms;
+ void * base_addr;
+ uint64_t align, len;
+ phys_addr_t ioremap_addr;
+
+ ioremap_addr = 0;
+
+ memset(ms_tbl, 0, sizeof(ms_tbl));
+ memset(&mz, 0, sizeof(struct rte_memzone));
+ memset(&ms, 0, sizeof(struct rte_memseg));
+
+ /* first, build a table of memsegs to map, to avoid failed mmaps due to
+ * overlaps
+ */
+ for (i = 0; i < ivshmem_config->segment_idx && i <= RTE_MAX_MEMSEG; i++) {
+ if (i == RTE_MAX_MEMSEG) {
+ RTE_LOG(ERR, EAL, "Too many segments requested!\n");
+ return -1;
+ }
+
+ seg = &ivshmem_config->segment[i];
+
+ /* copy segment to table */
+ memcpy(&ms_tbl[i], seg, sizeof(struct ivshmem_segment));
+
+ /* find ioremap addr */
+ for (j = 0; j < DIM(ivshmem_config->pci_devs); j++) {
+ pci_dev = &ivshmem_config->pci_devs[j];
+ if (!strncmp(pci_dev->path, seg->path, sizeof(pci_dev->path))) {
+ ioremap_addr = pci_dev->ioremap_addr;
+ break;
+ }
+ }
+ if (ioremap_addr == 0) {
+ RTE_LOG(ERR, EAL, "Cannot find ioremap addr!\n");
+ return -1;
+ }
+
+ /* work out alignments */
+ align = seg->entry.mz.addr_64 -
+ RTE_ALIGN_FLOOR(seg->entry.mz.addr_64, 0x1000);
+ len = RTE_ALIGN_CEIL(seg->entry.mz.len + align, 0x1000);
+
+ /* save original alignments */
+ ms_tbl[i].align = align;
+
+ /* create a memory zone */
+ mz.addr_64 = seg->entry.mz.addr_64 - align;
+ mz.len = len;
+ mz.hugepage_sz = seg->entry.mz.hugepage_sz;
+ mz.phys_addr = seg->entry.mz.phys_addr - align;
+
+ /* find true physical address */
+ mz.ioremap_addr = ioremap_addr + seg->entry.offset - align;
+
+ ms_tbl[i].entry.offset = seg->entry.offset - align;
+
+ memcpy(&ms_tbl[i].entry.mz, &mz, sizeof(struct rte_memzone));
+ }
+
+ /* clean up the segments */
+ memseg_idx = cleanup_segments(ms_tbl, ivshmem_config->segment_idx);
+
+ if (memseg_idx < 0)
+ return -1;
+
+ mcfg = rte_eal_get_configuration()->mem_config;
+
+ fd_zero = open("/dev/zero", O_RDWR);
+
+ if (fd_zero < 0) {
+ RTE_LOG(ERR, EAL, "Cannot open /dev/zero: %s\n", strerror(errno));
+ return -1;
+ }
+
+ /* create memsegs and put them into DPDK memory */
+ for (i = 0; i < (unsigned) memseg_idx; i++) {
+
+ seg = &ms_tbl[i];
+
+ ms.addr_64 = seg->entry.mz.addr_64;
+ ms.hugepage_sz = seg->entry.mz.hugepage_sz;
+ ms.len = seg->entry.mz.len;
+ ms.nchannel = rte_memory_get_nchannel();
+ ms.nrank = rte_memory_get_nrank();
+ ms.phys_addr = seg->entry.mz.phys_addr;
+ ms.ioremap_addr = seg->entry.mz.ioremap_addr;
+ ms.socket_id = seg->entry.mz.socket_id;
+
+ base_addr = mmap(ms.addr, ms.len,
+ PROT_READ | PROT_WRITE, MAP_PRIVATE, fd_zero, 0);
+
+ if (base_addr == MAP_FAILED || base_addr != ms.addr) {
+ RTE_LOG(ERR, EAL, "Cannot map /dev/zero!\n");
+ return -1;
+ }
+
+ fd = open(seg->path, O_RDWR);
+
+ if (fd < 0) {
+ RTE_LOG(ERR, EAL, "Cannot open %s: %s\n", seg->path,
+ strerror(errno));
+ return -1;
+ }
+
+ munmap(ms.addr, ms.len);
+
+ base_addr = mmap(ms.addr, ms.len,
+ PROT_READ | PROT_WRITE, MAP_SHARED, fd,
+ seg->entry.offset);
+
+
+ if (base_addr == MAP_FAILED || base_addr != ms.addr) {
+ RTE_LOG(ERR, EAL, "Cannot map segment into memory: "
+ "expected %p got %p (%s)\n", ms.addr, base_addr,
+ strerror(errno));
+ return -1;
+ }
+
+ RTE_LOG(DEBUG, EAL, "Memory segment mapped: %p (len %" PRIx64 ") at "
+ "offset 0x%" PRIx64 "\n",
+ ms.addr, ms.len, seg->entry.offset);
+
+ /* put the pointers back into their real positions using original
+ * alignment */
+ ms.addr_64 += seg->align;
+ ms.phys_addr += seg->align;
+ ms.ioremap_addr += seg->align;
+ ms.len -= seg->align;
+
+ /* at this point, the rest of DPDK memory is not initialized, so we
+ * expect memsegs to be empty */
+ memcpy(&mcfg->memseg[i], &ms,
+ sizeof(struct rte_memseg));
+ memcpy(&mcfg->free_memseg[i], &ms,
+ sizeof(struct rte_memseg));
+
+
+ /* adjust the free_memseg so that there's no free space left */
+ mcfg->free_memseg[i].ioremap_addr += mcfg->free_memseg[i].len;
+ mcfg->free_memseg[i].phys_addr += mcfg->free_memseg[i].len;
+ mcfg->free_memseg[i].addr_64 += mcfg->free_memseg[i].len;
+ mcfg->free_memseg[i].len = 0;
+
+ close(fd);
+
+ RTE_LOG(DEBUG, EAL, "IVSHMEM segment found, size: 0x%lx\n",
+ ms.len);
+ }
+
+ return 0;
+}
+
+/* this happens at a later stage, after general EAL memory initialization */
+int
+rte_eal_ivshmem_obj_init(void)
+{
+ struct rte_ring_list* ring_list = NULL;
+ struct rte_mem_config * mcfg;
+ struct ivshmem_segment * seg;
+ struct rte_memzone * mz;
+ struct rte_ring * r;
+ struct rte_tailq_entry *te;
+ unsigned i, ms, idx;
+ uint64_t offset;
+
+ /* secondary process would not need any object discovery - it'll all
+ * already be in shared config */
+ if (rte_eal_process_type() != RTE_PROC_PRIMARY || ivshmem_config == NULL)
+ return 0;
+
+ /* check that we have an initialised ring tail queue */
+ if ((ring_list =
+ RTE_TAILQ_LOOKUP_BY_IDX(RTE_TAILQ_RING, rte_ring_list)) == NULL) {
+ RTE_LOG(ERR, EAL, "No rte_ring tailq found!\n");
+ return -1;
+ }
+
+ mcfg = rte_eal_get_configuration()->mem_config;
+
+ /* create memzones */
+ for (i = 0; i < ivshmem_config->segment_idx && i <= RTE_MAX_MEMZONE; i++) {
+
+ seg = &ivshmem_config->segment[i];
+
+ /* add memzone */
+ if (mcfg->memzone_idx == RTE_MAX_MEMZONE) {
+ RTE_LOG(ERR, EAL, "No more memory zones available!\n");
+ return -1;
+ }
+
+ idx = mcfg->memzone_idx;
+
+ RTE_LOG(DEBUG, EAL, "Found memzone: '%s' at %p (len 0x%" PRIx64 ")\n",
+ seg->entry.mz.name, seg->entry.mz.addr, seg->entry.mz.len);
+
+ memcpy(&mcfg->memzone[idx], &seg->entry.mz,
+ sizeof(struct rte_memzone));
+
+ /* find ioremap address */
+ for (ms = 0; ms <= RTE_MAX_MEMSEG; ms++) {
+ if (ms == RTE_MAX_MEMSEG) {
+ RTE_LOG(ERR, EAL, "Physical address of segment not found!\n");
+ return -1;
+ }
+ if (CONTAINS(mcfg->memseg[ms], mcfg->memzone[idx])) {
+ offset = mcfg->memzone[idx].addr_64 -
+ mcfg->memseg[ms].addr_64;
+ mcfg->memzone[idx].ioremap_addr = mcfg->memseg[ms].ioremap_addr +
+ offset;
+ break;
+ }
+ }
+
+ mcfg->memzone_idx++;
+ }
+
+ rte_rwlock_write_lock(RTE_EAL_TAILQ_RWLOCK);
+
+ /* find rings */
+ for (i = 0; i < mcfg->memzone_idx; i++) {
+ mz = &mcfg->memzone[i];
+
+ /* check if memzone has a ring prefix */
+ if (strncmp(mz->name, RTE_RING_MZ_PREFIX,
+ sizeof(RTE_RING_MZ_PREFIX) - 1) != 0)
+ continue;
+
+ r = (struct rte_ring*) (mz->addr_64);
+
+ te = rte_zmalloc("RING_TAILQ_ENTRY", sizeof(*te), 0);
+ if (te == NULL) {
+ RTE_LOG(ERR, EAL, "Cannot allocate ring tailq entry!\n");
+ return -1;
+ }
+
+ te->data = (void *) r;
+
+ TAILQ_INSERT_TAIL(ring_list, te, next);
+
+ RTE_LOG(DEBUG, EAL, "Found ring: '%s' at %p\n", r->name, mz->addr);
+ }
+ rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);
+
+#ifdef RTE_LIBRTE_IVSHMEM_DEBUG
+ rte_memzone_dump(stdout);
+ rte_ring_list_dump(stdout);
+#endif
+
+ return 0;
+}
+
+/* initialize ivshmem structures */
+int rte_eal_ivshmem_init(void)
+{
+ struct rte_pci_device * dev;
+ struct rte_pci_resource * res;
+ int fd, ret;
+ char path[PATH_MAX];
+
+ /* initialize everything to 0 */
+ memset(path, 0, sizeof(path));
+ ivshmem_config = NULL;
+
+ pagesz = getpagesize();
+
+ RTE_LOG(DEBUG, EAL, "Searching for IVSHMEM devices...\n");
+
+ if (rte_eal_process_type() == RTE_PROC_SECONDARY) {
+
+ if (open_shared_config() < 0) {
+ RTE_LOG(ERR, EAL, "Could not open IVSHMEM config!\n");
+ return -1;
+ }
+ }
+ else {
+
+ TAILQ_FOREACH(dev, &pci_device_list, next) {
+
+ if (is_ivshmem_device(dev)) {
+
+ /* IVSHMEM memory is always on BAR2 */
+ res = &dev->mem_resource[2];
+
+ /* if we don't have a BAR2 */
+ if (res->len == 0)
+ continue;
+
+ /* construct pci device path */
+ snprintf(path, sizeof(path), IVSHMEM_RESOURCE_PATH,
+ dev->addr.domain, dev->addr.bus, dev->addr.devid,
+ dev->addr.function);
+
+ /* try to find memseg */
+ fd = open(path, O_RDWR);
+ if (fd < 0) {
+ RTE_LOG(ERR, EAL, "Could not open %s\n", path);
+ return -1;
+ }
+
+ /* check if it's a DPDK IVSHMEM device */
+ ret = has_ivshmem_metadata(fd, res->len);
+
+ /* is DPDK device */
+ if (ret == 1) {
+
+ /* config file creation is deferred until the first
+ * DPDK device is found. then, it has to be created
+ * only once. */
+ if (ivshmem_config == NULL &&
+ create_shared_config() < 0) {
+ RTE_LOG(ERR, EAL, "Could not create IVSHMEM config!\n");
+ close(fd);
+ return -1;
+ }
+
+ if (read_metadata(path, sizeof(path), fd, res->len) < 0) {
+ RTE_LOG(ERR, EAL, "Could not read metadata from"
+ " device %02x:%02x.%x!\n", dev->addr.bus,
+ dev->addr.devid, dev->addr.function);
+ close(fd);
+ return -1;
+ }
+
+ if (ivshmem_config->pci_devs_idx == RTE_LIBRTE_IVSHMEM_MAX_PCI_DEVS) {
+ RTE_LOG(WARNING, EAL,
+ "IVSHMEM PCI device limit exceeded. Increase "
+ "CONFIG_RTE_LIBRTE_IVSHMEM_MAX_PCI_DEVS in "
+ "your config file.\n");
+ break;
+ }
+
+ RTE_LOG(INFO, EAL, "Found IVSHMEM device %02x:%02x.%x\n",
+ dev->addr.bus, dev->addr.devid, dev->addr.function);
+
+ ivshmem_config->pci_devs[ivshmem_config->pci_devs_idx].ioremap_addr = res->phys_addr;
+ snprintf(ivshmem_config->pci_devs[ivshmem_config->pci_devs_idx].path,
+ sizeof(ivshmem_config->pci_devs[ivshmem_config->pci_devs_idx].path),
+ "%s", path);
+
+ ivshmem_config->pci_devs_idx++;
+ }
+ /* failed to read */
+ else if (ret < 0) {
+ RTE_LOG(ERR, EAL, "Could not read IVSHMEM device: %s\n",
+ strerror(errno));
+ close(fd);
+ return -1;
+ }
+ /* not a DPDK device */
+ else
+ RTE_LOG(DEBUG, EAL, "Skipping non-DPDK IVSHMEM device\n");
+
+ /* close the BAR fd */
+ close(fd);
+ }
+ }
+ }
+
+ /* ivshmem_config is not NULL only if config was created and/or mapped */
+ if (ivshmem_config) {
+ if (map_all_segments() < 0) {
+ RTE_LOG(ERR, EAL, "Mapping IVSHMEM segments failed!\n");
+ return -1;
+ }
+ }
+ else {
+ RTE_LOG(DEBUG, EAL, "No IVSHMEM configuration found! \n");
+ }
+
+ return 0;
+}
+
+#endif