summaryrefslogtreecommitdiffstats
path: root/external_libs/python/pyzmq-14.7.0/bundled/libsodium/src/libsodium/crypto_pwhash/scryptsalsa208sha256/sse/pwhash_scryptsalsa208sha256_sse.c
blob: a5202ed68cf22c0d1d7656b2f33fa40ababd5aa4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
/*-
 * Copyright 2009 Colin Percival
 * Copyright 2012,2013 Alexander Peslyak
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * This file was originally written by Colin Percival as part of the Tarsnap
 * online backup system.
 */

#if defined(HAVE_EMMINTRIN_H) || defined(_MSC_VER)
#if __GNUC__
# pragma GCC target("sse2")
#endif
#include <emmintrin.h>
#if defined(__XOP__) && defined(DISABLED)
# include <x86intrin.h>
#endif

#include <errno.h>
#include <limits.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>

#include "../pbkdf2-sha256.h"
#include "../sysendian.h"
#include "../crypto_scrypt.h"

#if defined(__XOP__) && defined(DISABLED)
#define ARX(out, in1, in2, s) \
	out = _mm_xor_si128(out, _mm_roti_epi32(_mm_add_epi32(in1, in2), s));
#else
#define ARX(out, in1, in2, s) \
	{ \
		__m128i T = _mm_add_epi32(in1, in2); \
		out = _mm_xor_si128(out, _mm_slli_epi32(T, s)); \
		out = _mm_xor_si128(out, _mm_srli_epi32(T, 32-s)); \
	}
#endif

#define SALSA20_2ROUNDS \
	/* Operate on "columns". */ \
	ARX(X1, X0, X3, 7) \
	ARX(X2, X1, X0, 9) \
	ARX(X3, X2, X1, 13) \
	ARX(X0, X3, X2, 18) \
\
	/* Rearrange data. */ \
	X1 = _mm_shuffle_epi32(X1, 0x93); \
	X2 = _mm_shuffle_epi32(X2, 0x4E); \
	X3 = _mm_shuffle_epi32(X3, 0x39); \
\
	/* Operate on "rows". */ \
	ARX(X3, X0, X1, 7) \
	ARX(X2, X3, X0, 9) \
	ARX(X1, X2, X3, 13) \
	ARX(X0, X1, X2, 18) \
\
	/* Rearrange data. */ \
	X1 = _mm_shuffle_epi32(X1, 0x39); \
	X2 = _mm_shuffle_epi32(X2, 0x4E); \
	X3 = _mm_shuffle_epi32(X3, 0x93);

/**
 * Apply the salsa20/8 core to the block provided in (X0 ... X3) ^ (Z0 ... Z3).
 */
#define SALSA20_8_XOR(in, out) \
	{ \
		__m128i Y0 = X0 = _mm_xor_si128(X0, (in)[0]); \
		__m128i Y1 = X1 = _mm_xor_si128(X1, (in)[1]); \
		__m128i Y2 = X2 = _mm_xor_si128(X2, (in)[2]); \
		__m128i Y3 = X3 = _mm_xor_si128(X3, (in)[3]); \
		SALSA20_2ROUNDS \
		SALSA20_2ROUNDS \
		SALSA20_2ROUNDS \
		SALSA20_2ROUNDS \
		(out)[0] = X0 = _mm_add_epi32(X0, Y0); \
		(out)[1] = X1 = _mm_add_epi32(X1, Y1); \
		(out)[2] = X2 = _mm_add_epi32(X2, Y2); \
		(out)[3] = X3 = _mm_add_epi32(X3, Y3); \
	}

/**
 * blockmix_salsa8(Bin, Bout, r):
 * Compute Bout = BlockMix_{salsa20/8, r}(Bin).  The input Bin must be 128r
 * bytes in length; the output Bout must also be the same size.
 */
static inline void
blockmix_salsa8(const __m128i * Bin, __m128i * Bout, size_t r)
{
	__m128i X0, X1, X2, X3;
	size_t i;

	/* 1: X <-- B_{2r - 1} */
	X0 = Bin[8 * r - 4];
	X1 = Bin[8 * r - 3];
	X2 = Bin[8 * r - 2];
	X3 = Bin[8 * r - 1];

	/* 3: X <-- H(X \xor B_i) */
	/* 4: Y_i <-- X */
	/* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
	SALSA20_8_XOR(Bin, Bout)

	/* 2: for i = 0 to 2r - 1 do */
	r--;
	for (i = 0; i < r;) {
		/* 3: X <-- H(X \xor B_i) */
		/* 4: Y_i <-- X */
		/* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
		SALSA20_8_XOR(&Bin[i * 8 + 4], &Bout[(r + i) * 4 + 4])

		i++;

		/* 3: X <-- H(X \xor B_i) */
		/* 4: Y_i <-- X */
		/* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
		SALSA20_8_XOR(&Bin[i * 8], &Bout[i * 4])
	}

	/* 3: X <-- H(X \xor B_i) */
	/* 4: Y_i <-- X */
	/* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
	SALSA20_8_XOR(&Bin[i * 8 + 4], &Bout[(r + i) * 4 + 4])
}

#define XOR4(in) \
	X0 = _mm_xor_si128(X0, (in)[0]); \
	X1 = _mm_xor_si128(X1, (in)[1]); \
	X2 = _mm_xor_si128(X2, (in)[2]); \
	X3 = _mm_xor_si128(X3, (in)[3]);

#define XOR4_2(in1, in2) \
	X0 = _mm_xor_si128((in1)[0], (in2)[0]); \
	X1 = _mm_xor_si128((in1)[1], (in2)[1]); \
	X2 = _mm_xor_si128((in1)[2], (in2)[2]); \
	X3 = _mm_xor_si128((in1)[3], (in2)[3]);

static inline uint32_t
blockmix_salsa8_xor(const __m128i * Bin1, const __m128i * Bin2, __m128i * Bout,
    size_t r)
{
	__m128i X0, X1, X2, X3;
	size_t i;

	/* 1: X <-- B_{2r - 1} */
	XOR4_2(&Bin1[8 * r - 4], &Bin2[8 * r - 4])

	/* 3: X <-- H(X \xor B_i) */
	/* 4: Y_i <-- X */
	/* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
	XOR4(Bin1)
	SALSA20_8_XOR(Bin2, Bout)

	/* 2: for i = 0 to 2r - 1 do */
	r--;
	for (i = 0; i < r;) {
		/* 3: X <-- H(X \xor B_i) */
		/* 4: Y_i <-- X */
		/* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
		XOR4(&Bin1[i * 8 + 4])
		SALSA20_8_XOR(&Bin2[i * 8 + 4], &Bout[(r + i) * 4 + 4])

		i++;

		/* 3: X <-- H(X \xor B_i) */
		/* 4: Y_i <-- X */
		/* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
		XOR4(&Bin1[i * 8])
		SALSA20_8_XOR(&Bin2[i * 8], &Bout[i * 4])
	}

	/* 3: X <-- H(X \xor B_i) */
	/* 4: Y_i <-- X */
	/* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
	XOR4(&Bin1[i * 8 + 4])
	SALSA20_8_XOR(&Bin2[i * 8 + 4], &Bout[(r + i) * 4 + 4])

	return _mm_cvtsi128_si32(X0);
}

#undef ARX
#undef SALSA20_2ROUNDS
#undef SALSA20_8_XOR
#undef XOR4
#undef XOR4_2

/**
 * integerify(B, r):
 * Return the result of parsing B_{2r-1} as a little-endian integer.
 */
static inline uint32_t
integerify(const void * B, size_t r)
{
	return *(const uint32_t *)((uintptr_t)(B) + (2 * r - 1) * 64);
}

/**
 * smix(B, r, N, V, XY):
 * Compute B = SMix_r(B, N).  The input B must be 128r bytes in length;
 * the temporary storage V must be 128rN bytes in length; the temporary
 * storage XY must be 256r + 64 bytes in length.  The value N must be a
 * power of 2 greater than 1.  The arrays B, V, and XY must be aligned to a
 * multiple of 64 bytes.
 */
static void
smix(uint8_t * B, size_t r, uint32_t N, void * V, void * XY)
{
	size_t s = 128 * r;
	__m128i * X = (__m128i *) V, * Y;
	uint32_t * X32 = (uint32_t *) V;
	uint32_t i, j;
	size_t k;

	/* 1: X <-- B */
	/* 3: V_i <-- X */
	for (k = 0; k < 2 * r; k++) {
		for (i = 0; i < 16; i++) {
			X32[k * 16 + i] =
			    le32dec(&B[(k * 16 + (i * 5 % 16)) * 4]);
		}
	}

	/* 2: for i = 0 to N - 1 do */
	for (i = 1; i < N - 1; i += 2) {
		/* 4: X <-- H(X) */
		/* 3: V_i <-- X */
		Y = (__m128i *)((uintptr_t)(V) + i * s);
		blockmix_salsa8(X, Y, r);

		/* 4: X <-- H(X) */
		/* 3: V_i <-- X */
		X = (__m128i *)((uintptr_t)(V) + (i + 1) * s);
		blockmix_salsa8(Y, X, r);
	}

	/* 4: X <-- H(X) */
	/* 3: V_i <-- X */
	Y = (__m128i *)((uintptr_t)(V) + i * s);
	blockmix_salsa8(X, Y, r);

	/* 4: X <-- H(X) */
	/* 3: V_i <-- X */
	X = (__m128i *) XY;
	blockmix_salsa8(Y, X, r);

	X32 = (uint32_t *) XY;
	Y = (__m128i *)((uintptr_t)(XY) + s);

	/* 7: j <-- Integerify(X) mod N */
	j = integerify(X, r) & (N - 1);

	/* 6: for i = 0 to N - 1 do */
	for (i = 0; i < N; i += 2) {
		__m128i * V_j = (__m128i *)((uintptr_t)(V) + j * s);

		/* 8: X <-- H(X \xor V_j) */
		/* 7: j <-- Integerify(X) mod N */
		j = blockmix_salsa8_xor(X, V_j, Y, r) & (N - 1);
		V_j = (__m128i *)((uintptr_t)(V) + j * s);

		/* 8: X <-- H(X \xor V_j) */
		/* 7: j <-- Integerify(X) mod N */
		j = blockmix_salsa8_xor(Y, V_j, X, r) & (N - 1);
	}

	/* 10: B' <-- X */
	for (k = 0; k < 2 * r; k++) {
		for (i = 0; i < 16; i++) {
			le32enc(&B[(k * 16 + (i * 5 % 16)) * 4],
			    X32[k * 16 + i]);
		}
	}
}

/**
 * escrypt_kdf(local, passwd, passwdlen, salt, saltlen,
 *     N, r, p, buf, buflen):
 * Compute scrypt(passwd[0 .. passwdlen - 1], salt[0 .. saltlen - 1], N, r,
 * p, buflen) and write the result into buf.  The parameters r, p, and buflen
 * must satisfy r * p < 2^30 and buflen <= (2^32 - 1) * 32.  The parameter N
 * must be a power of 2 greater than 1.
 *
 * Return 0 on success; or -1 on error.
 */
int
escrypt_kdf_sse(escrypt_local_t * local,
    const uint8_t * passwd, size_t passwdlen,
    const uint8_t * salt, size_t saltlen,
    uint64_t N, uint32_t _r, uint32_t _p,
    uint8_t * buf, size_t buflen)
{
	size_t B_size, V_size, XY_size, need;
	uint8_t * B;
	uint32_t * V, * XY;
    size_t r = _r, p = _p;
	uint32_t i;

	/* Sanity-check parameters. */
#if SIZE_MAX > UINT32_MAX
	if (buflen > (((uint64_t)(1) << 32) - 1) * 32) {
		errno = EFBIG;
		return -1;
	}
#endif
	if ((uint64_t)(r) * (uint64_t)(p) >= (1 << 30)) {
		errno = EFBIG;
		return -1;
	}
	if (N > UINT32_MAX) {
		errno = EFBIG;
		return -1;
	}
	if (((N & (N - 1)) != 0) || (N < 2)) {
		errno = EINVAL;
		return -1;
	}
	if (r == 0 || p == 0) {
		errno = EINVAL;
		return -1;
	}
	if ((r > SIZE_MAX / 128 / p) ||
#if SIZE_MAX / 256 <= UINT32_MAX
	    (r > SIZE_MAX / 256) ||
#endif
	    (N > SIZE_MAX / 128 / r)) {
		errno = ENOMEM;
		return -1;
	}

	/* Allocate memory. */
	B_size = (size_t)128 * r * p;
	V_size = (size_t)128 * r * N;
	need = B_size + V_size;
	if (need < V_size) {
		errno = ENOMEM;
		return -1;
	}
	XY_size = (size_t)256 * r + 64;
	need += XY_size;
	if (need < XY_size) {
		errno = ENOMEM;
		return -1;
	}
	if (local->size < need) {
		if (free_region(local))
			return -1; /* LCOV_EXCL_LINE */
		if (!alloc_region(local, need))
			return -1; /* LCOV_EXCL_LINE */
	}
	B = (uint8_t *)local->aligned;
	V = (uint32_t *)((uint8_t *)B + B_size);
	XY = (uint32_t *)((uint8_t *)V + V_size);

	/* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */
	PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, 1, B, B_size);

	/* 2: for i = 0 to p - 1 do */
	for (i = 0; i < p; i++) {
		/* 3: B_i <-- MF(B_i, N) */
		smix(&B[(size_t)128 * i * r], r, (uint32_t) N, V, XY);
	}

	/* 5: DK <-- PBKDF2(P, B, 1, dkLen) */
	PBKDF2_SHA256(passwd, passwdlen, B, B_size, 1, buf, buflen);

	/* Success! */
	return 0;
}
#endif