summaryrefslogtreecommitdiffstats
path: root/src/dpdk_lib18/librte_acl/acl_run_sse.c
blob: 69a9d7752f735d7a5af4cb837486705cc3c71b9b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
/*-
 *   BSD LICENSE
 *
 *   Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
 *   All rights reserved.
 *
 *   Redistribution and use in source and binary forms, with or without
 *   modification, are permitted provided that the following conditions
 *   are met:
 *
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in
 *       the documentation and/or other materials provided with the
 *       distribution.
 *     * Neither the name of Intel Corporation nor the names of its
 *       contributors may be used to endorse or promote products derived
 *       from this software without specific prior written permission.
 *
 *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "acl_run.h"

enum {
	SHUFFLE32_SLOT1 = 0xe5,
	SHUFFLE32_SLOT2 = 0xe6,
	SHUFFLE32_SLOT3 = 0xe7,
	SHUFFLE32_SWAP64 = 0x4e,
};

static const rte_xmm_t mm_type_quad_range = {
	.u32 = {
		RTE_ACL_NODE_QRANGE,
		RTE_ACL_NODE_QRANGE,
		RTE_ACL_NODE_QRANGE,
		RTE_ACL_NODE_QRANGE,
	},
};

static const rte_xmm_t mm_type_quad_range64 = {
	.u32 = {
		RTE_ACL_NODE_QRANGE,
		RTE_ACL_NODE_QRANGE,
		0,
		0,
	},
};

static const rte_xmm_t mm_shuffle_input = {
	.u32 = {0x00000000, 0x04040404, 0x08080808, 0x0c0c0c0c},
};

static const rte_xmm_t mm_shuffle_input64 = {
	.u32 = {0x00000000, 0x04040404, 0x80808080, 0x80808080},
};

static const rte_xmm_t mm_ones_16 = {
	.u16 = {1, 1, 1, 1, 1, 1, 1, 1},
};

static const rte_xmm_t mm_bytes = {
	.u32 = {UINT8_MAX, UINT8_MAX, UINT8_MAX, UINT8_MAX},
};

static const rte_xmm_t mm_bytes64 = {
	.u32 = {UINT8_MAX, UINT8_MAX, 0, 0},
};

static const rte_xmm_t mm_match_mask = {
	.u32 = {
		RTE_ACL_NODE_MATCH,
		RTE_ACL_NODE_MATCH,
		RTE_ACL_NODE_MATCH,
		RTE_ACL_NODE_MATCH,
	},
};

static const rte_xmm_t mm_match_mask64 = {
	.u32 = {
		RTE_ACL_NODE_MATCH,
		0,
		RTE_ACL_NODE_MATCH,
		0,
	},
};

static const rte_xmm_t mm_index_mask = {
	.u32 = {
		RTE_ACL_NODE_INDEX,
		RTE_ACL_NODE_INDEX,
		RTE_ACL_NODE_INDEX,
		RTE_ACL_NODE_INDEX,
	},
};

static const rte_xmm_t mm_index_mask64 = {
	.u32 = {
		RTE_ACL_NODE_INDEX,
		RTE_ACL_NODE_INDEX,
		0,
		0,
	},
};


/*
 * Resolve priority for multiple results (sse version).
 * This consists comparing the priority of the current traversal with the
 * running set of results for the packet.
 * For each result, keep a running array of the result (rule number) and
 * its priority for each category.
 */
static inline void
resolve_priority_sse(uint64_t transition, int n, const struct rte_acl_ctx *ctx,
	struct parms *parms, const struct rte_acl_match_results *p,
	uint32_t categories)
{
	uint32_t x;
	xmm_t results, priority, results1, priority1, selector;
	xmm_t *saved_results, *saved_priority;

	for (x = 0; x < categories; x += RTE_ACL_RESULTS_MULTIPLIER) {

		saved_results = (xmm_t *)(&parms[n].cmplt->results[x]);
		saved_priority =
			(xmm_t *)(&parms[n].cmplt->priority[x]);

		/* get results and priorities for completed trie */
		results = MM_LOADU((const xmm_t *)&p[transition].results[x]);
		priority = MM_LOADU((const xmm_t *)&p[transition].priority[x]);

		/* if this is not the first completed trie */
		if (parms[n].cmplt->count != ctx->num_tries) {

			/* get running best results and their priorities */
			results1 = MM_LOADU(saved_results);
			priority1 = MM_LOADU(saved_priority);

			/* select results that are highest priority */
			selector = MM_CMPGT32(priority1, priority);
			results = MM_BLENDV8(results, results1, selector);
			priority = MM_BLENDV8(priority, priority1, selector);
		}

		/* save running best results and their priorities */
		MM_STOREU(saved_results, results);
		MM_STOREU(saved_priority, priority);
	}
}

/*
 * Extract transitions from an XMM register and check for any matches
 */
static void
acl_process_matches(xmm_t *indices, int slot, const struct rte_acl_ctx *ctx,
	struct parms *parms, struct acl_flow_data *flows)
{
	uint64_t transition1, transition2;

	/* extract transition from low 64 bits. */
	transition1 = MM_CVT64(*indices);

	/* extract transition from high 64 bits. */
	*indices = MM_SHUFFLE32(*indices, SHUFFLE32_SWAP64);
	transition2 = MM_CVT64(*indices);

	transition1 = acl_match_check(transition1, slot, ctx,
		parms, flows, resolve_priority_sse);
	transition2 = acl_match_check(transition2, slot + 1, ctx,
		parms, flows, resolve_priority_sse);

	/* update indices with new transitions. */
	*indices = MM_SET64(transition2, transition1);
}

/*
 * Check for a match in 2 transitions (contained in SSE register)
 */
static inline void
acl_match_check_x2(int slot, const struct rte_acl_ctx *ctx, struct parms *parms,
	struct acl_flow_data *flows, xmm_t *indices, xmm_t match_mask)
{
	xmm_t temp;

	temp = MM_AND(match_mask, *indices);
	while (!MM_TESTZ(temp, temp)) {
		acl_process_matches(indices, slot, ctx, parms, flows);
		temp = MM_AND(match_mask, *indices);
	}
}

/*
 * Check for any match in 4 transitions (contained in 2 SSE registers)
 */
static inline void
acl_match_check_x4(int slot, const struct rte_acl_ctx *ctx, struct parms *parms,
	struct acl_flow_data *flows, xmm_t *indices1, xmm_t *indices2,
	xmm_t match_mask)
{
	xmm_t temp;

	/* put low 32 bits of each transition into one register */
	temp = (xmm_t)MM_SHUFFLEPS((__m128)*indices1, (__m128)*indices2,
		0x88);
	/* test for match node */
	temp = MM_AND(match_mask, temp);

	while (!MM_TESTZ(temp, temp)) {
		acl_process_matches(indices1, slot, ctx, parms, flows);
		acl_process_matches(indices2, slot + 2, ctx, parms, flows);

		temp = (xmm_t)MM_SHUFFLEPS((__m128)*indices1,
					(__m128)*indices2,
					0x88);
		temp = MM_AND(match_mask, temp);
	}
}

/*
 * Calculate the address of the next transition for
 * all types of nodes. Note that only DFA nodes and range
 * nodes actually transition to another node. Match
 * nodes don't move.
 */
static inline xmm_t
acl_calc_addr(xmm_t index_mask, xmm_t next_input, xmm_t shuffle_input,
	xmm_t ones_16, xmm_t bytes, xmm_t type_quad_range,
	xmm_t *indices1, xmm_t *indices2)
{
	xmm_t addr, node_types, temp;

	/*
	 * Note that no transition is done for a match
	 * node and therefore a stream freezes when
	 * it reaches a match.
	 */

	/* Shuffle low 32 into temp and high 32 into indices2 */
	temp = (xmm_t)MM_SHUFFLEPS((__m128)*indices1, (__m128)*indices2,
		0x88);
	*indices2 = (xmm_t)MM_SHUFFLEPS((__m128)*indices1,
		(__m128)*indices2, 0xdd);

	/* Calc node type and node addr */
	node_types = MM_ANDNOT(index_mask, temp);
	addr = MM_AND(index_mask, temp);

	/*
	 * Calc addr for DFAs - addr = dfa_index + input_byte
	 */

	/* mask for DFA type (0) nodes */
	temp = MM_CMPEQ32(node_types, MM_XOR(node_types, node_types));

	/* add input byte to DFA position */
	temp = MM_AND(temp, bytes);
	temp = MM_AND(temp, next_input);
	addr = MM_ADD32(addr, temp);

	/*
	 * Calc addr for Range nodes -> range_index + range(input)
	 */
	node_types = MM_CMPEQ32(node_types, type_quad_range);

	/*
	 * Calculate number of range boundaries that are less than the
	 * input value. Range boundaries for each node are in signed 8 bit,
	 * ordered from -128 to 127 in the indices2 register.
	 * This is effectively a popcnt of bytes that are greater than the
	 * input byte.
	 */

	/* shuffle input byte to all 4 positions of 32 bit value */
	temp = MM_SHUFFLE8(next_input, shuffle_input);

	/* check ranges */
	temp = MM_CMPGT8(temp, *indices2);

	/* convert -1 to 1 (bytes greater than input byte */
	temp = MM_SIGN8(temp, temp);

	/* horizontal add pairs of bytes into words */
	temp = MM_MADD8(temp, temp);

	/* horizontal add pairs of words into dwords */
	temp = MM_MADD16(temp, ones_16);

	/* mask to range type nodes */
	temp = MM_AND(temp, node_types);

	/* add index into node position */
	return MM_ADD32(addr, temp);
}

/*
 * Process 4 transitions (in 2 SIMD registers) in parallel
 */
static inline xmm_t
transition4(xmm_t index_mask, xmm_t next_input, xmm_t shuffle_input,
	xmm_t ones_16, xmm_t bytes, xmm_t type_quad_range,
	const uint64_t *trans, xmm_t *indices1, xmm_t *indices2)
{
	xmm_t addr;
	uint64_t trans0, trans2;

	 /* Calculate the address (array index) for all 4 transitions. */

	addr = acl_calc_addr(index_mask, next_input, shuffle_input, ones_16,
		bytes, type_quad_range, indices1, indices2);

	 /* Gather 64 bit transitions and pack back into 2 registers. */

	trans0 = trans[MM_CVT32(addr)];

	/* get slot 2 */

	/* {x0, x1, x2, x3} -> {x2, x1, x2, x3} */
	addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT2);
	trans2 = trans[MM_CVT32(addr)];

	/* get slot 1 */

	/* {x2, x1, x2, x3} -> {x1, x1, x2, x3} */
	addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT1);
	*indices1 = MM_SET64(trans[MM_CVT32(addr)], trans0);

	/* get slot 3 */

	/* {x1, x1, x2, x3} -> {x3, x1, x2, x3} */
	addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT3);
	*indices2 = MM_SET64(trans[MM_CVT32(addr)], trans2);

	return MM_SRL32(next_input, 8);
}

/*
 * Execute trie traversal with 8 traversals in parallel
 */
static inline int
search_sse_8(const struct rte_acl_ctx *ctx, const uint8_t **data,
	uint32_t *results, uint32_t total_packets, uint32_t categories)
{
	int n;
	struct acl_flow_data flows;
	uint64_t index_array[MAX_SEARCHES_SSE8];
	struct completion cmplt[MAX_SEARCHES_SSE8];
	struct parms parms[MAX_SEARCHES_SSE8];
	xmm_t input0, input1;
	xmm_t indices1, indices2, indices3, indices4;

	acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results,
		total_packets, categories, ctx->trans_table);

	for (n = 0; n < MAX_SEARCHES_SSE8; n++) {
		cmplt[n].count = 0;
		index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
	}

	/*
	 * indices1 contains index_array[0,1]
	 * indices2 contains index_array[2,3]
	 * indices3 contains index_array[4,5]
	 * indices4 contains index_array[6,7]
	 */

	indices1 = MM_LOADU((xmm_t *) &index_array[0]);
	indices2 = MM_LOADU((xmm_t *) &index_array[2]);

	indices3 = MM_LOADU((xmm_t *) &index_array[4]);
	indices4 = MM_LOADU((xmm_t *) &index_array[6]);

	 /* Check for any matches. */
	acl_match_check_x4(0, ctx, parms, &flows,
		&indices1, &indices2, mm_match_mask.m);
	acl_match_check_x4(4, ctx, parms, &flows,
		&indices3, &indices4, mm_match_mask.m);

	while (flows.started > 0) {

		/* Gather 4 bytes of input data for each stream. */
		input0 = MM_INSERT32(mm_ones_16.m, GET_NEXT_4BYTES(parms, 0),
			0);
		input1 = MM_INSERT32(mm_ones_16.m, GET_NEXT_4BYTES(parms, 4),
			0);

		input0 = MM_INSERT32(input0, GET_NEXT_4BYTES(parms, 1), 1);
		input1 = MM_INSERT32(input1, GET_NEXT_4BYTES(parms, 5), 1);

		input0 = MM_INSERT32(input0, GET_NEXT_4BYTES(parms, 2), 2);
		input1 = MM_INSERT32(input1, GET_NEXT_4BYTES(parms, 6), 2);

		input0 = MM_INSERT32(input0, GET_NEXT_4BYTES(parms, 3), 3);
		input1 = MM_INSERT32(input1, GET_NEXT_4BYTES(parms, 7), 3);

		 /* Process the 4 bytes of input on each stream. */

		input0 = transition4(mm_index_mask.m, input0,
			mm_shuffle_input.m, mm_ones_16.m,
			mm_bytes.m, mm_type_quad_range.m,
			flows.trans, &indices1, &indices2);

		input1 = transition4(mm_index_mask.m, input1,
			mm_shuffle_input.m, mm_ones_16.m,
			mm_bytes.m, mm_type_quad_range.m,
			flows.trans, &indices3, &indices4);

		input0 = transition4(mm_index_mask.m, input0,
			mm_shuffle_input.m, mm_ones_16.m,
			mm_bytes.m, mm_type_quad_range.m,
			flows.trans, &indices1, &indices2);

		input1 = transition4(mm_index_mask.m, input1,
			mm_shuffle_input.m, mm_ones_16.m,
			mm_bytes.m, mm_type_quad_range.m,
			flows.trans, &indices3, &indices4);

		input0 = transition4(mm_index_mask.m, input0,
			mm_shuffle_input.m, mm_ones_16.m,
			mm_bytes.m, mm_type_quad_range.m,
			flows.trans, &indices1, &indices2);

		input1 = transition4(mm_index_mask.m, input1,
			mm_shuffle_input.m, mm_ones_16.m,
			mm_bytes.m, mm_type_quad_range.m,
			flows.trans, &indices3, &indices4);

		input0 = transition4(mm_index_mask.m, input0,
			mm_shuffle_input.m, mm_ones_16.m,
			mm_bytes.m, mm_type_quad_range.m,
			flows.trans, &indices1, &indices2);

		input1 = transition4(mm_index_mask.m, input1,
			mm_shuffle_input.m, mm_ones_16.m,
			mm_bytes.m, mm_type_quad_range.m,
			flows.trans, &indices3, &indices4);

		 /* Check for any matches. */
		acl_match_check_x4(0, ctx, parms, &flows,
			&indices1, &indices2, mm_match_mask.m);
		acl_match_check_x4(4, ctx, parms, &flows,
			&indices3, &indices4, mm_match_mask.m);
	}

	return 0;
}

/*
 * Execute trie traversal with 4 traversals in parallel
 */
static inline int
search_sse_4(const struct rte_acl_ctx *ctx, const uint8_t **data,
	 uint32_t *results, int total_packets, uint32_t categories)
{
	int n;
	struct acl_flow_data flows;
	uint64_t index_array[MAX_SEARCHES_SSE4];
	struct completion cmplt[MAX_SEARCHES_SSE4];
	struct parms parms[MAX_SEARCHES_SSE4];
	xmm_t input, indices1, indices2;

	acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results,
		total_packets, categories, ctx->trans_table);

	for (n = 0; n < MAX_SEARCHES_SSE4; n++) {
		cmplt[n].count = 0;
		index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
	}

	indices1 = MM_LOADU((xmm_t *) &index_array[0]);
	indices2 = MM_LOADU((xmm_t *) &index_array[2]);

	/* Check for any matches. */
	acl_match_check_x4(0, ctx, parms, &flows,
		&indices1, &indices2, mm_match_mask.m);

	while (flows.started > 0) {

		/* Gather 4 bytes of input data for each stream. */
		input = MM_INSERT32(mm_ones_16.m, GET_NEXT_4BYTES(parms, 0), 0);
		input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 1), 1);
		input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 2), 2);
		input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 3), 3);

		/* Process the 4 bytes of input on each stream. */
		input = transition4(mm_index_mask.m, input,
			mm_shuffle_input.m, mm_ones_16.m,
			mm_bytes.m, mm_type_quad_range.m,
			flows.trans, &indices1, &indices2);

		 input = transition4(mm_index_mask.m, input,
			mm_shuffle_input.m, mm_ones_16.m,
			mm_bytes.m, mm_type_quad_range.m,
			flows.trans, &indices1, &indices2);

		 input = transition4(mm_index_mask.m, input,
			mm_shuffle_input.m, mm_ones_16.m,
			mm_bytes.m, mm_type_quad_range.m,
			flows.trans, &indices1, &indices2);

		 input = transition4(mm_index_mask.m, input,
			mm_shuffle_input.m, mm_ones_16.m,
			mm_bytes.m, mm_type_quad_range.m,
			flows.trans, &indices1, &indices2);

		/* Check for any matches. */
		acl_match_check_x4(0, ctx, parms, &flows,
			&indices1, &indices2, mm_match_mask.m);
	}

	return 0;
}

static inline xmm_t
transition2(xmm_t index_mask, xmm_t next_input, xmm_t shuffle_input,
	xmm_t ones_16, xmm_t bytes, xmm_t type_quad_range,
	const uint64_t *trans, xmm_t *indices1)
{
	uint64_t t;
	xmm_t addr, indices2;

	indices2 = MM_XOR(ones_16, ones_16);

	addr = acl_calc_addr(index_mask, next_input, shuffle_input, ones_16,
		bytes, type_quad_range, indices1, &indices2);

	/* Gather 64 bit transitions and pack 2 per register. */

	t = trans[MM_CVT32(addr)];

	/* get slot 1 */
	addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT1);
	*indices1 = MM_SET64(trans[MM_CVT32(addr)], t);

	return MM_SRL32(next_input, 8);
}

/*
 * Execute trie traversal with 2 traversals in parallel.
 */
static inline int
search_sse_2(const struct rte_acl_ctx *ctx, const uint8_t **data,
	uint32_t *results, uint32_t total_packets, uint32_t categories)
{
	int n;
	struct acl_flow_data flows;
	uint64_t index_array[MAX_SEARCHES_SSE2];
	struct completion cmplt[MAX_SEARCHES_SSE2];
	struct parms parms[MAX_SEARCHES_SSE2];
	xmm_t input, indices;

	acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results,
		total_packets, categories, ctx->trans_table);

	for (n = 0; n < MAX_SEARCHES_SSE2; n++) {
		cmplt[n].count = 0;
		index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
	}

	indices = MM_LOADU((xmm_t *) &index_array[0]);

	/* Check for any matches. */
	acl_match_check_x2(0, ctx, parms, &flows, &indices, mm_match_mask64.m);

	while (flows.started > 0) {

		/* Gather 4 bytes of input data for each stream. */
		input = MM_INSERT32(mm_ones_16.m, GET_NEXT_4BYTES(parms, 0), 0);
		input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 1), 1);

		/* Process the 4 bytes of input on each stream. */

		input = transition2(mm_index_mask64.m, input,
			mm_shuffle_input64.m, mm_ones_16.m,
			mm_bytes64.m, mm_type_quad_range64.m,
			flows.trans, &indices);

		input = transition2(mm_index_mask64.m, input,
			mm_shuffle_input64.m, mm_ones_16.m,
			mm_bytes64.m, mm_type_quad_range64.m,
			flows.trans, &indices);

		input = transition2(mm_index_mask64.m, input,
			mm_shuffle_input64.m, mm_ones_16.m,
			mm_bytes64.m, mm_type_quad_range64.m,
			flows.trans, &indices);

		input = transition2(mm_index_mask64.m, input,
			mm_shuffle_input64.m, mm_ones_16.m,
			mm_bytes64.m, mm_type_quad_range64.m,
			flows.trans, &indices);

		/* Check for any matches. */
		acl_match_check_x2(0, ctx, parms, &flows, &indices,
			mm_match_mask64.m);
	}

	return 0;
}

int
rte_acl_classify_sse(const struct rte_acl_ctx *ctx, const uint8_t **data,
	uint32_t *results, uint32_t num, uint32_t categories)
{
	if (categories != 1 &&
		((RTE_ACL_RESULTS_MULTIPLIER - 1) & categories) != 0)
		return -EINVAL;

	if (likely(num >= MAX_SEARCHES_SSE8))
		return search_sse_8(ctx, data, results, num, categories);
	else if (num >= MAX_SEARCHES_SSE4)
		return search_sse_4(ctx, data, results, num, categories);
	else
		return search_sse_2(ctx, data, results, num, categories);
}