aboutsummaryrefslogtreecommitdiffstats
path: root/external/libxml2_android/jni/libxml2/trionan.c
diff options
context:
space:
mode:
Diffstat (limited to 'external/libxml2_android/jni/libxml2/trionan.c')
-rw-r--r--external/libxml2_android/jni/libxml2/trionan.c914
1 files changed, 0 insertions, 914 deletions
diff --git a/external/libxml2_android/jni/libxml2/trionan.c b/external/libxml2_android/jni/libxml2/trionan.c
deleted file mode 100644
index 6fbabb5d..00000000
--- a/external/libxml2_android/jni/libxml2/trionan.c
+++ /dev/null
@@ -1,914 +0,0 @@
-/*************************************************************************
- *
- * $Id$
- *
- * Copyright (C) 2001 Bjorn Reese <breese@users.sourceforge.net>
- *
- * Permission to use, copy, modify, and distribute this software for any
- * purpose with or without fee is hereby granted, provided that the above
- * copyright notice and this permission notice appear in all copies.
- *
- * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
- * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
- * MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE AUTHORS AND
- * CONTRIBUTORS ACCEPT NO RESPONSIBILITY IN ANY CONCEIVABLE MANNER.
- *
- ************************************************************************
- *
- * Functions to handle special quantities in floating-point numbers
- * (that is, NaNs and infinity). They provide the capability to detect
- * and fabricate special quantities.
- *
- * Although written to be as portable as possible, it can never be
- * guaranteed to work on all platforms, as not all hardware supports
- * special quantities.
- *
- * The approach used here (approximately) is to:
- *
- * 1. Use C99 functionality when available.
- * 2. Use IEEE 754 bit-patterns if possible.
- * 3. Use platform-specific techniques.
- *
- ************************************************************************/
-
-/*
- * TODO:
- * o Put all the magic into trio_fpclassify_and_signbit(), and use this from
- * trio_isnan() etc.
- */
-
-/*************************************************************************
- * Include files
- */
-#include "triodef.h"
-#include "trionan.h"
-
-#include <math.h>
-#include <string.h>
-#include <limits.h>
-#include <float.h>
-#if defined(TRIO_PLATFORM_UNIX)
-# include <signal.h>
-#endif
-#if defined(TRIO_COMPILER_DECC)
-# if defined(__linux__)
-# include <cpml.h>
-# else
-# include <fp_class.h>
-# endif
-#endif
-#include <assert.h>
-
-#if defined(TRIO_DOCUMENTATION)
-# include "doc/doc_nan.h"
-#endif
-/** @addtogroup SpecialQuantities
- @{
-*/
-
-/*************************************************************************
- * Definitions
- */
-
-#define TRIO_TRUE (1 == 1)
-#define TRIO_FALSE (0 == 1)
-
-/*
- * We must enable IEEE floating-point on Alpha
- */
-#if defined(__alpha) && !defined(_IEEE_FP)
-# if defined(TRIO_COMPILER_DECC)
-# if defined(TRIO_PLATFORM_VMS)
-# error "Must be compiled with option /IEEE_MODE=UNDERFLOW_TO_ZERO/FLOAT=IEEE"
-# else
-# if !defined(_CFE)
-# error "Must be compiled with option -ieee"
-# endif
-# endif
-# elif defined(TRIO_COMPILER_GCC) && (defined(__osf__) || defined(__linux__))
-# error "Must be compiled with option -mieee"
-# endif
-#endif /* __alpha && ! _IEEE_FP */
-
-/*
- * In ANSI/IEEE 754-1985 64-bits double format numbers have the
- * following properties (amoungst others)
- *
- * o FLT_RADIX == 2: binary encoding
- * o DBL_MAX_EXP == 1024: 11 bits exponent, where one bit is used
- * to indicate special numbers (e.g. NaN and Infinity), so the
- * maximum exponent is 10 bits wide (2^10 == 1024).
- * o DBL_MANT_DIG == 53: The mantissa is 52 bits wide, but because
- * numbers are normalized the initial binary 1 is represented
- * implicitly (the so-called "hidden bit"), which leaves us with
- * the ability to represent 53 bits wide mantissa.
- */
-#if (FLT_RADIX == 2) && (DBL_MAX_EXP == 1024) && (DBL_MANT_DIG == 53)
-# define USE_IEEE_754
-#endif
-
-
-/*************************************************************************
- * Constants
- */
-
-static TRIO_CONST char rcsid[] = "@(#)$Id$";
-
-#if defined(USE_IEEE_754)
-
-/*
- * Endian-agnostic indexing macro.
- *
- * The value of internalEndianMagic, when converted into a 64-bit
- * integer, becomes 0x0706050403020100 (we could have used a 64-bit
- * integer value instead of a double, but not all platforms supports
- * that type). The value is automatically encoded with the correct
- * endianess by the compiler, which means that we can support any
- * kind of endianess. The individual bytes are then used as an index
- * for the IEEE 754 bit-patterns and masks.
- */
-#define TRIO_DOUBLE_INDEX(x) (((unsigned char *)&internalEndianMagic)[7-(x)])
-
-#if (defined(__BORLANDC__) && __BORLANDC__ >= 0x0590)
-static TRIO_CONST double internalEndianMagic = 7.949928895127362e-275;
-#else
-static TRIO_CONST double internalEndianMagic = 7.949928895127363e-275;
-#endif
-
-/* Mask for the exponent */
-static TRIO_CONST unsigned char ieee_754_exponent_mask[] = {
- 0x7F, 0xF0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
-};
-
-/* Mask for the mantissa */
-static TRIO_CONST unsigned char ieee_754_mantissa_mask[] = {
- 0x00, 0x0F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF
-};
-
-/* Mask for the sign bit */
-static TRIO_CONST unsigned char ieee_754_sign_mask[] = {
- 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
-};
-
-/* Bit-pattern for negative zero */
-static TRIO_CONST unsigned char ieee_754_negzero_array[] = {
- 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
-};
-
-/* Bit-pattern for infinity */
-static TRIO_CONST unsigned char ieee_754_infinity_array[] = {
- 0x7F, 0xF0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
-};
-
-/* Bit-pattern for quiet NaN */
-static TRIO_CONST unsigned char ieee_754_qnan_array[] = {
- 0x7F, 0xF8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
-};
-
-
-/*************************************************************************
- * Functions
- */
-
-/*
- * trio_make_double
- */
-TRIO_PRIVATE double
-trio_make_double
-TRIO_ARGS1((values),
- TRIO_CONST unsigned char *values)
-{
- TRIO_VOLATILE double result;
- int i;
-
- for (i = 0; i < (int)sizeof(double); i++) {
- ((TRIO_VOLATILE unsigned char *)&result)[TRIO_DOUBLE_INDEX(i)] = values[i];
- }
- return result;
-}
-
-/*
- * trio_is_special_quantity
- */
-TRIO_PRIVATE int
-trio_is_special_quantity
-TRIO_ARGS2((number, has_mantissa),
- double number,
- int *has_mantissa)
-{
- unsigned int i;
- unsigned char current;
- int is_special_quantity = TRIO_TRUE;
-
- *has_mantissa = 0;
-
- for (i = 0; i < (unsigned int)sizeof(double); i++) {
- current = ((unsigned char *)&number)[TRIO_DOUBLE_INDEX(i)];
- is_special_quantity
- &= ((current & ieee_754_exponent_mask[i]) == ieee_754_exponent_mask[i]);
- *has_mantissa |= (current & ieee_754_mantissa_mask[i]);
- }
- return is_special_quantity;
-}
-
-/*
- * trio_is_negative
- */
-TRIO_PRIVATE int
-trio_is_negative
-TRIO_ARGS1((number),
- double number)
-{
- unsigned int i;
- int is_negative = TRIO_FALSE;
-
- for (i = 0; i < (unsigned int)sizeof(double); i++) {
- is_negative |= (((unsigned char *)&number)[TRIO_DOUBLE_INDEX(i)]
- & ieee_754_sign_mask[i]);
- }
- return is_negative;
-}
-
-#endif /* USE_IEEE_754 */
-
-
-/**
- Generate negative zero.
-
- @return Floating-point representation of negative zero.
-*/
-TRIO_PUBLIC double
-trio_nzero(TRIO_NOARGS)
-{
-#if defined(USE_IEEE_754)
- return trio_make_double(ieee_754_negzero_array);
-#else
- TRIO_VOLATILE double zero = 0.0;
-
- return -zero;
-#endif
-}
-
-/**
- Generate positive infinity.
-
- @return Floating-point representation of positive infinity.
-*/
-TRIO_PUBLIC double
-trio_pinf(TRIO_NOARGS)
-{
- /* Cache the result */
- static double result = 0.0;
-
- if (result == 0.0) {
-
-#if defined(INFINITY) && defined(__STDC_IEC_559__)
- result = (double)INFINITY;
-
-#elif defined(USE_IEEE_754)
- result = trio_make_double(ieee_754_infinity_array);
-
-#else
- /*
- * If HUGE_VAL is different from DBL_MAX, then HUGE_VAL is used
- * as infinity. Otherwise we have to resort to an overflow
- * operation to generate infinity.
- */
-# if defined(TRIO_PLATFORM_UNIX)
- void (*signal_handler)(int) = signal(SIGFPE, SIG_IGN);
-# endif
-
- result = HUGE_VAL;
- if (HUGE_VAL == DBL_MAX) {
- /* Force overflow */
- result += HUGE_VAL;
- }
-
-# if defined(TRIO_PLATFORM_UNIX)
- signal(SIGFPE, signal_handler);
-# endif
-
-#endif
- }
- return result;
-}
-
-/**
- Generate negative infinity.
-
- @return Floating-point value of negative infinity.
-*/
-TRIO_PUBLIC double
-trio_ninf(TRIO_NOARGS)
-{
- static double result = 0.0;
-
- if (result == 0.0) {
- /*
- * Negative infinity is calculated by negating positive infinity,
- * which can be done because it is legal to do calculations on
- * infinity (for example, 1 / infinity == 0).
- */
- result = -trio_pinf();
- }
- return result;
-}
-
-/**
- Generate NaN.
-
- @return Floating-point representation of NaN.
-*/
-TRIO_PUBLIC double
-trio_nan(TRIO_NOARGS)
-{
- /* Cache the result */
- static double result = 0.0;
-
- if (result == 0.0) {
-
-#if defined(TRIO_COMPILER_SUPPORTS_C99)
- result = nan("");
-
-#elif defined(NAN) && defined(__STDC_IEC_559__)
- result = (double)NAN;
-
-#elif defined(USE_IEEE_754)
- result = trio_make_double(ieee_754_qnan_array);
-
-#else
- /*
- * There are several ways to generate NaN. The one used here is
- * to divide infinity by infinity. I would have preferred to add
- * negative infinity to positive infinity, but that yields wrong
- * result (infinity) on FreeBSD.
- *
- * This may fail if the hardware does not support NaN, or if
- * the Invalid Operation floating-point exception is unmasked.
- */
-# if defined(TRIO_PLATFORM_UNIX)
- void (*signal_handler)(int) = signal(SIGFPE, SIG_IGN);
-# endif
-
- result = trio_pinf() / trio_pinf();
-
-# if defined(TRIO_PLATFORM_UNIX)
- signal(SIGFPE, signal_handler);
-# endif
-
-#endif
- }
- return result;
-}
-
-/**
- Check for NaN.
-
- @param number An arbitrary floating-point number.
- @return Boolean value indicating whether or not the number is a NaN.
-*/
-TRIO_PUBLIC int
-trio_isnan
-TRIO_ARGS1((number),
- double number)
-{
-#if (defined(TRIO_COMPILER_SUPPORTS_C99) && defined(isnan)) \
- || defined(TRIO_COMPILER_SUPPORTS_UNIX95)
- /*
- * C99 defines isnan() as a macro. UNIX95 defines isnan() as a
- * function. This function was already present in XPG4, but this
- * is a bit tricky to detect with compiler defines, so we choose
- * the conservative approach and only use it for UNIX95.
- */
- return isnan(number);
-
-#elif defined(TRIO_COMPILER_MSVC) || defined(TRIO_COMPILER_BCB)
- /*
- * Microsoft Visual C++ and Borland C++ Builder have an _isnan()
- * function.
- */
- return _isnan(number) ? TRIO_TRUE : TRIO_FALSE;
-
-#elif defined(USE_IEEE_754)
- /*
- * Examine IEEE 754 bit-pattern. A NaN must have a special exponent
- * pattern, and a non-empty mantissa.
- */
- int has_mantissa;
- int is_special_quantity;
-
- is_special_quantity = trio_is_special_quantity(number, &has_mantissa);
-
- return (is_special_quantity && has_mantissa);
-
-#else
- /*
- * Fallback solution
- */
- int status;
- double integral, fraction;
-
-# if defined(TRIO_PLATFORM_UNIX)
- void (*signal_handler)(int) = signal(SIGFPE, SIG_IGN);
-# endif
-
- status = (/*
- * NaN is the only number which does not compare to itself
- */
- ((TRIO_VOLATILE double)number != (TRIO_VOLATILE double)number) ||
- /*
- * Fallback solution if NaN compares to NaN
- */
- ((number != 0.0) &&
- (fraction = modf(number, &integral),
- integral == fraction)));
-
-# if defined(TRIO_PLATFORM_UNIX)
- signal(SIGFPE, signal_handler);
-# endif
-
- return status;
-
-#endif
-}
-
-/**
- Check for infinity.
-
- @param number An arbitrary floating-point number.
- @return 1 if positive infinity, -1 if negative infinity, 0 otherwise.
-*/
-TRIO_PUBLIC int
-trio_isinf
-TRIO_ARGS1((number),
- double number)
-{
-#if defined(TRIO_COMPILER_DECC) && !defined(__linux__)
- /*
- * DECC has an isinf() macro, but it works differently than that
- * of C99, so we use the fp_class() function instead.
- */
- return ((fp_class(number) == FP_POS_INF)
- ? 1
- : ((fp_class(number) == FP_NEG_INF) ? -1 : 0));
-
-#elif defined(isinf)
- /*
- * C99 defines isinf() as a macro.
- */
- return isinf(number)
- ? ((number > 0.0) ? 1 : -1)
- : 0;
-
-#elif defined(TRIO_COMPILER_MSVC) || defined(TRIO_COMPILER_BCB)
- /*
- * Microsoft Visual C++ and Borland C++ Builder have an _fpclass()
- * function that can be used to detect infinity.
- */
- return ((_fpclass(number) == _FPCLASS_PINF)
- ? 1
- : ((_fpclass(number) == _FPCLASS_NINF) ? -1 : 0));
-
-#elif defined(USE_IEEE_754)
- /*
- * Examine IEEE 754 bit-pattern. Infinity must have a special exponent
- * pattern, and an empty mantissa.
- */
- int has_mantissa;
- int is_special_quantity;
-
- is_special_quantity = trio_is_special_quantity(number, &has_mantissa);
-
- return (is_special_quantity && !has_mantissa)
- ? ((number < 0.0) ? -1 : 1)
- : 0;
-
-#else
- /*
- * Fallback solution.
- */
- int status;
-
-# if defined(TRIO_PLATFORM_UNIX)
- void (*signal_handler)(int) = signal(SIGFPE, SIG_IGN);
-# endif
-
- double infinity = trio_pinf();
-
- status = ((number == infinity)
- ? 1
- : ((number == -infinity) ? -1 : 0));
-
-# if defined(TRIO_PLATFORM_UNIX)
- signal(SIGFPE, signal_handler);
-# endif
-
- return status;
-
-#endif
-}
-
-#if 0
- /* Temporary fix - this routine is not used anywhere */
-/**
- Check for finity.
-
- @param number An arbitrary floating-point number.
- @return Boolean value indicating whether or not the number is a finite.
-*/
-TRIO_PUBLIC int
-trio_isfinite
-TRIO_ARGS1((number),
- double number)
-{
-#if defined(TRIO_COMPILER_SUPPORTS_C99) && defined(isfinite)
- /*
- * C99 defines isfinite() as a macro.
- */
- return isfinite(number);
-
-#elif defined(TRIO_COMPILER_MSVC) || defined(TRIO_COMPILER_BCB)
- /*
- * Microsoft Visual C++ and Borland C++ Builder use _finite().
- */
- return _finite(number);
-
-#elif defined(USE_IEEE_754)
- /*
- * Examine IEEE 754 bit-pattern. For finity we do not care about the
- * mantissa.
- */
- int dummy;
-
- return (! trio_is_special_quantity(number, &dummy));
-
-#else
- /*
- * Fallback solution.
- */
- return ((trio_isinf(number) == 0) && (trio_isnan(number) == 0));
-
-#endif
-}
-
-#endif
-
-/*
- * The sign of NaN is always false
- */
-TRIO_PUBLIC int
-trio_fpclassify_and_signbit
-TRIO_ARGS2((number, is_negative),
- double number,
- int *is_negative)
-{
-#if defined(fpclassify) && defined(signbit)
- /*
- * C99 defines fpclassify() and signbit() as a macros
- */
- *is_negative = signbit(number);
- switch (fpclassify(number)) {
- case FP_NAN:
- return TRIO_FP_NAN;
- case FP_INFINITE:
- return TRIO_FP_INFINITE;
- case FP_SUBNORMAL:
- return TRIO_FP_SUBNORMAL;
- case FP_ZERO:
- return TRIO_FP_ZERO;
- default:
- return TRIO_FP_NORMAL;
- }
-
-#else
-# if defined(TRIO_COMPILER_DECC)
- /*
- * DECC has an fp_class() function.
- */
-# define TRIO_FPCLASSIFY(n) fp_class(n)
-# define TRIO_QUIET_NAN FP_QNAN
-# define TRIO_SIGNALLING_NAN FP_SNAN
-# define TRIO_POSITIVE_INFINITY FP_POS_INF
-# define TRIO_NEGATIVE_INFINITY FP_NEG_INF
-# define TRIO_POSITIVE_SUBNORMAL FP_POS_DENORM
-# define TRIO_NEGATIVE_SUBNORMAL FP_NEG_DENORM
-# define TRIO_POSITIVE_ZERO FP_POS_ZERO
-# define TRIO_NEGATIVE_ZERO FP_NEG_ZERO
-# define TRIO_POSITIVE_NORMAL FP_POS_NORM
-# define TRIO_NEGATIVE_NORMAL FP_NEG_NORM
-
-# elif defined(TRIO_COMPILER_MSVC) || defined(TRIO_COMPILER_BCB)
- /*
- * Microsoft Visual C++ and Borland C++ Builder have an _fpclass()
- * function.
- */
-# define TRIO_FPCLASSIFY(n) _fpclass(n)
-# define TRIO_QUIET_NAN _FPCLASS_QNAN
-# define TRIO_SIGNALLING_NAN _FPCLASS_SNAN
-# define TRIO_POSITIVE_INFINITY _FPCLASS_PINF
-# define TRIO_NEGATIVE_INFINITY _FPCLASS_NINF
-# define TRIO_POSITIVE_SUBNORMAL _FPCLASS_PD
-# define TRIO_NEGATIVE_SUBNORMAL _FPCLASS_ND
-# define TRIO_POSITIVE_ZERO _FPCLASS_PZ
-# define TRIO_NEGATIVE_ZERO _FPCLASS_NZ
-# define TRIO_POSITIVE_NORMAL _FPCLASS_PN
-# define TRIO_NEGATIVE_NORMAL _FPCLASS_NN
-
-# elif defined(FP_PLUS_NORM)
- /*
- * HP-UX 9.x and 10.x have an fpclassify() function, that is different
- * from the C99 fpclassify() macro supported on HP-UX 11.x.
- *
- * AIX has class() for C, and _class() for C++, which returns the
- * same values as the HP-UX fpclassify() function.
- */
-# if defined(TRIO_PLATFORM_AIX)
-# if defined(__cplusplus)
-# define TRIO_FPCLASSIFY(n) _class(n)
-# else
-# define TRIO_FPCLASSIFY(n) class(n)
-# endif
-# else
-# define TRIO_FPCLASSIFY(n) fpclassify(n)
-# endif
-# define TRIO_QUIET_NAN FP_QNAN
-# define TRIO_SIGNALLING_NAN FP_SNAN
-# define TRIO_POSITIVE_INFINITY FP_PLUS_INF
-# define TRIO_NEGATIVE_INFINITY FP_MINUS_INF
-# define TRIO_POSITIVE_SUBNORMAL FP_PLUS_DENORM
-# define TRIO_NEGATIVE_SUBNORMAL FP_MINUS_DENORM
-# define TRIO_POSITIVE_ZERO FP_PLUS_ZERO
-# define TRIO_NEGATIVE_ZERO FP_MINUS_ZERO
-# define TRIO_POSITIVE_NORMAL FP_PLUS_NORM
-# define TRIO_NEGATIVE_NORMAL FP_MINUS_NORM
-# endif
-
-# if defined(TRIO_FPCLASSIFY)
- switch (TRIO_FPCLASSIFY(number)) {
- case TRIO_QUIET_NAN:
- case TRIO_SIGNALLING_NAN:
- *is_negative = TRIO_FALSE; /* NaN has no sign */
- return TRIO_FP_NAN;
- case TRIO_POSITIVE_INFINITY:
- *is_negative = TRIO_FALSE;
- return TRIO_FP_INFINITE;
- case TRIO_NEGATIVE_INFINITY:
- *is_negative = TRIO_TRUE;
- return TRIO_FP_INFINITE;
- case TRIO_POSITIVE_SUBNORMAL:
- *is_negative = TRIO_FALSE;
- return TRIO_FP_SUBNORMAL;
- case TRIO_NEGATIVE_SUBNORMAL:
- *is_negative = TRIO_TRUE;
- return TRIO_FP_SUBNORMAL;
- case TRIO_POSITIVE_ZERO:
- *is_negative = TRIO_FALSE;
- return TRIO_FP_ZERO;
- case TRIO_NEGATIVE_ZERO:
- *is_negative = TRIO_TRUE;
- return TRIO_FP_ZERO;
- case TRIO_POSITIVE_NORMAL:
- *is_negative = TRIO_FALSE;
- return TRIO_FP_NORMAL;
- case TRIO_NEGATIVE_NORMAL:
- *is_negative = TRIO_TRUE;
- return TRIO_FP_NORMAL;
- default:
- /* Just in case... */
- *is_negative = (number < 0.0);
- return TRIO_FP_NORMAL;
- }
-
-# else
- /*
- * Fallback solution.
- */
- int rc;
-
- if (number == 0.0) {
- /*
- * In IEEE 754 the sign of zero is ignored in comparisons, so we
- * have to handle this as a special case by examining the sign bit
- * directly.
- */
-# if defined(USE_IEEE_754)
- *is_negative = trio_is_negative(number);
-# else
- *is_negative = TRIO_FALSE; /* FIXME */
-# endif
- return TRIO_FP_ZERO;
- }
- if (trio_isnan(number)) {
- *is_negative = TRIO_FALSE;
- return TRIO_FP_NAN;
- }
- if ((rc = trio_isinf(number))) {
- *is_negative = (rc == -1);
- return TRIO_FP_INFINITE;
- }
- if ((number > 0.0) && (number < DBL_MIN)) {
- *is_negative = TRIO_FALSE;
- return TRIO_FP_SUBNORMAL;
- }
- if ((number < 0.0) && (number > -DBL_MIN)) {
- *is_negative = TRIO_TRUE;
- return TRIO_FP_SUBNORMAL;
- }
- *is_negative = (number < 0.0);
- return TRIO_FP_NORMAL;
-
-# endif
-#endif
-}
-
-/**
- Examine the sign of a number.
-
- @param number An arbitrary floating-point number.
- @return Boolean value indicating whether or not the number has the
- sign bit set (i.e. is negative).
-*/
-TRIO_PUBLIC int
-trio_signbit
-TRIO_ARGS1((number),
- double number)
-{
- int is_negative;
-
- (void)trio_fpclassify_and_signbit(number, &is_negative);
- return is_negative;
-}
-
-#if 0
- /* Temporary fix - this routine is not used in libxml */
-/**
- Examine the class of a number.
-
- @param number An arbitrary floating-point number.
- @return Enumerable value indicating the class of @p number
-*/
-TRIO_PUBLIC int
-trio_fpclassify
-TRIO_ARGS1((number),
- double number)
-{
- int dummy;
-
- return trio_fpclassify_and_signbit(number, &dummy);
-}
-
-#endif
-
-/** @} SpecialQuantities */
-
-/*************************************************************************
- * For test purposes.
- *
- * Add the following compiler option to include this test code.
- *
- * Unix : -DSTANDALONE
- * VMS : /DEFINE=(STANDALONE)
- */
-#if defined(STANDALONE)
-# include <stdio.h>
-
-static TRIO_CONST char *
-getClassification
-TRIO_ARGS1((type),
- int type)
-{
- switch (type) {
- case TRIO_FP_INFINITE:
- return "FP_INFINITE";
- case TRIO_FP_NAN:
- return "FP_NAN";
- case TRIO_FP_NORMAL:
- return "FP_NORMAL";
- case TRIO_FP_SUBNORMAL:
- return "FP_SUBNORMAL";
- case TRIO_FP_ZERO:
- return "FP_ZERO";
- default:
- return "FP_UNKNOWN";
- }
-}
-
-static void
-print_class
-TRIO_ARGS2((prefix, number),
- TRIO_CONST char *prefix,
- double number)
-{
- printf("%-6s: %s %-15s %g\n",
- prefix,
- trio_signbit(number) ? "-" : "+",
- getClassification(TRIO_FPCLASSIFY(number)),
- number);
-}
-
-int main(TRIO_NOARGS)
-{
- double my_nan;
- double my_pinf;
- double my_ninf;
-# if defined(TRIO_PLATFORM_UNIX)
- void (*signal_handler) TRIO_PROTO((int));
-# endif
-
- my_nan = trio_nan();
- my_pinf = trio_pinf();
- my_ninf = trio_ninf();
-
- print_class("Nan", my_nan);
- print_class("PInf", my_pinf);
- print_class("NInf", my_ninf);
- print_class("PZero", 0.0);
- print_class("NZero", -0.0);
- print_class("PNorm", 1.0);
- print_class("NNorm", -1.0);
- print_class("PSub", 1.01e-307 - 1.00e-307);
- print_class("NSub", 1.00e-307 - 1.01e-307);
-
- printf("NaN : %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
- my_nan,
- ((unsigned char *)&my_nan)[0],
- ((unsigned char *)&my_nan)[1],
- ((unsigned char *)&my_nan)[2],
- ((unsigned char *)&my_nan)[3],
- ((unsigned char *)&my_nan)[4],
- ((unsigned char *)&my_nan)[5],
- ((unsigned char *)&my_nan)[6],
- ((unsigned char *)&my_nan)[7],
- trio_isnan(my_nan), trio_isinf(my_nan));
- printf("PInf: %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
- my_pinf,
- ((unsigned char *)&my_pinf)[0],
- ((unsigned char *)&my_pinf)[1],
- ((unsigned char *)&my_pinf)[2],
- ((unsigned char *)&my_pinf)[3],
- ((unsigned char *)&my_pinf)[4],
- ((unsigned char *)&my_pinf)[5],
- ((unsigned char *)&my_pinf)[6],
- ((unsigned char *)&my_pinf)[7],
- trio_isnan(my_pinf), trio_isinf(my_pinf));
- printf("NInf: %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
- my_ninf,
- ((unsigned char *)&my_ninf)[0],
- ((unsigned char *)&my_ninf)[1],
- ((unsigned char *)&my_ninf)[2],
- ((unsigned char *)&my_ninf)[3],
- ((unsigned char *)&my_ninf)[4],
- ((unsigned char *)&my_ninf)[5],
- ((unsigned char *)&my_ninf)[6],
- ((unsigned char *)&my_ninf)[7],
- trio_isnan(my_ninf), trio_isinf(my_ninf));
-
-# if defined(TRIO_PLATFORM_UNIX)
- signal_handler = signal(SIGFPE, SIG_IGN);
-# endif
-
- my_pinf = DBL_MAX + DBL_MAX;
- my_ninf = -my_pinf;
- my_nan = my_pinf / my_pinf;
-
-# if defined(TRIO_PLATFORM_UNIX)
- signal(SIGFPE, signal_handler);
-# endif
-
- printf("NaN : %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
- my_nan,
- ((unsigned char *)&my_nan)[0],
- ((unsigned char *)&my_nan)[1],
- ((unsigned char *)&my_nan)[2],
- ((unsigned char *)&my_nan)[3],
- ((unsigned char *)&my_nan)[4],
- ((unsigned char *)&my_nan)[5],
- ((unsigned char *)&my_nan)[6],
- ((unsigned char *)&my_nan)[7],
- trio_isnan(my_nan), trio_isinf(my_nan));
- printf("PInf: %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
- my_pinf,
- ((unsigned char *)&my_pinf)[0],
- ((unsigned char *)&my_pinf)[1],
- ((unsigned char *)&my_pinf)[2],
- ((unsigned char *)&my_pinf)[3],
- ((unsigned char *)&my_pinf)[4],
- ((unsigned char *)&my_pinf)[5],
- ((unsigned char *)&my_pinf)[6],
- ((unsigned char *)&my_pinf)[7],
- trio_isnan(my_pinf), trio_isinf(my_pinf));
- printf("NInf: %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
- my_ninf,
- ((unsigned char *)&my_ninf)[0],
- ((unsigned char *)&my_ninf)[1],
- ((unsigned char *)&my_ninf)[2],
- ((unsigned char *)&my_ninf)[3],
- ((unsigned char *)&my_ninf)[4],
- ((unsigned char *)&my_ninf)[5],
- ((unsigned char *)&my_ninf)[6],
- ((unsigned char *)&my_ninf)[7],
- trio_isnan(my_ninf), trio_isinf(my_ninf));
-
- return 0;
-}
-#endif