diff options
author | Tibor Frank <tifrank@cisco.com> | 2024-03-11 12:00:34 +0000 |
---|---|---|
committer | Tibor Frank <tifrank@cisco.com> | 2024-03-11 12:03:32 +0000 |
commit | 0ca1dcc08772c39ea98fb304ce06ab794b65166c (patch) | |
tree | 7781d481c13e0e24886f3d6d4c25ba7993af4979 | |
parent | 18aa02486b8ca1e6143c1c492d079184ee63ee2b (diff) |
C-Dash: add "download row data" feature to comparison tables
Change-Id: Iaf5a57402e954453c237fb1e082da6c620cff59f
Signed-off-by: Tibor Frank <tifrank@cisco.com>
-rw-r--r-- | csit.infra.dash/app/cdash/comparisons/layout.py | 47 | ||||
-rw-r--r-- | csit.infra.dash/app/cdash/comparisons/tables.py | 68 |
2 files changed, 87 insertions, 28 deletions
diff --git a/csit.infra.dash/app/cdash/comparisons/layout.py b/csit.infra.dash/app/cdash/comparisons/layout.py index 82b5b2d544..9c89a55bcb 100644 --- a/csit.infra.dash/app/cdash/comparisons/layout.py +++ b/csit.infra.dash/app/cdash/comparisons/layout.py @@ -616,7 +616,7 @@ class Layout: ), dbc.Button( id="plot-btn-download", - children="Download Data", + children="Download Table", class_name="me-1", color="info", style={ @@ -624,7 +624,18 @@ class Layout: "padding": "0rem 1rem" } ), - dcc.Download(id="download-iterative-data") + dcc.Download(id="download-iterative-data"), + dbc.Button( + id="plot-btn-download-raw", + children="Download Raw Data", + class_name="me-1", + color="info", + style={ + "text-transform": "none", + "padding": "0rem 1rem" + } + ), + dcc.Download(id="download-raw-data") ], className=\ "d-grid gap-0 d-md-flex justify-content-md-end" @@ -1047,6 +1058,38 @@ class Layout: return dcc.send_data_frame(table.to_csv, C.COMP_DOWNLOAD_FILE_NAME) @app.callback( + Output("download-raw-data", "data"), + State("store-selected", "data"), + Input("plot-btn-download-raw", "n_clicks"), + prevent_initial_call=True + ) + def _download_raw_comparison_data(selected: dict, _: int) -> dict: + """Download the data. + + :param selected: Selected tests. + :type selected: dict + :returns: dict of data frame content (base64 encoded) and meta data + used by the Download component. + :rtype: dict + """ + + if not selected: + raise PreventUpdate + + _, table = comparison_table( + data=self._data, + selected=selected, + normalize=False, + remove_outliers=False, + raw_data=True + ) + + return dcc.send_data_frame( + table.dropna(how="all", axis=1).to_csv, + f"raw_{C.COMP_DOWNLOAD_FILE_NAME}" + ) + + @app.callback( Output("offcanvas-documentation", "is_open"), Input("btn-documentation", "n_clicks"), State("offcanvas-documentation", "is_open") diff --git a/csit.infra.dash/app/cdash/comparisons/tables.py b/csit.infra.dash/app/cdash/comparisons/tables.py index 0c247e87c2..18f9404f0a 100644 --- a/csit.infra.dash/app/cdash/comparisons/tables.py +++ b/csit.infra.dash/app/cdash/comparisons/tables.py @@ -27,7 +27,8 @@ def select_comp_data( data: pd.DataFrame, selected: dict, normalize: bool=False, - remove_outliers: bool=False + remove_outliers: bool=False, + raw_data: bool=False ) -> pd.DataFrame: """Select data for a comparison table. @@ -38,10 +39,13 @@ def select_comp_data( Constants.NORM_FREQUENCY. :param remove_outliers: If True the outliers are removed before generating the table. + :param raw_data: If True, returns data as it is in parquets without any + processing. It is used for "download raw data" feature. :type data: pandas.DataFrame :type selected: dict :type normalize: bool :type remove_outliers: bool + :type raw_data: bool :returns: A data frame with selected data. :rtype: pandas.DataFrame """ @@ -161,13 +165,14 @@ def select_comp_data( norm_factor = C.NORM_FREQUENCY / C.FREQUENCY[itm["tbed"]] else: norm_factor = 1.0 - tmp_df = _calculate_statistics( - tmp_df, - itm["ttype"].lower(), - itm["driver"], - norm_factor, - remove_outliers=remove_outliers - ) + if not raw_data: + tmp_df = _calculate_statistics( + tmp_df, + itm["ttype"].lower(), + itm["driver"], + norm_factor, + remove_outliers=remove_outliers + ) lst_df.append(tmp_df) @@ -190,7 +195,8 @@ def comparison_table( selected: dict, normalize: bool, format: str="html", - remove_outliers: bool=False + remove_outliers: bool=False, + raw_data: bool=False ) -> tuple: """Generate a comparison table. @@ -206,11 +212,14 @@ def comparison_table( units. :param remove_outliers: If True the outliers are removed before generating the table. + :param raw_data: If True, returns data as it is in parquets without any + processing. It is used for "download raw data" feature. :type data: pandas.DataFrame :type selected: dict :type normalize: bool :type format: str :type remove_outliers: bool + :type raw_data: bool :returns: A tuple with the tabe title and the comparison table. :rtype: tuple[str, pandas.DataFrame] """ @@ -241,9 +250,32 @@ def comparison_table( }) return selection + # Select reference data r_sel = deepcopy(selected["reference"]["selection"]) - c_params = selected["compare"] r_selection = _create_selection(r_sel) + r_data = select_comp_data( + data, r_selection, normalize, remove_outliers, raw_data + ) + + # Select compare data + c_sel = deepcopy(selected["reference"]["selection"]) + c_params = selected["compare"] + if c_params["parameter"] in ("core", "frmsize", "ttype"): + c_sel[c_params["parameter"]] = [c_params["value"], ] + else: + c_sel[c_params["parameter"]] = c_params["value"] + c_selection = _create_selection(c_sel) + c_data = select_comp_data( + data, c_selection, normalize, remove_outliers, raw_data + ) + + if raw_data: + r_data["ref/cmp"] = "reference" + c_data["ref/cmp"] = "compare" + return str(), pd.concat([r_data, c_data], ignore_index=True, copy=False) + + if r_data.empty or c_data.empty: + return str(), pd.DataFrame() if format == "html" and "Latency" not in r_sel["ttype"]: unit_factor, s_unit_factor = (1e6, "M") @@ -266,22 +298,6 @@ def comparison_table( r_name = "|".join(r_name) c_name = c_params["value"] - # Select reference data - r_data = select_comp_data(data, r_selection, normalize, remove_outliers) - - # Select compare data - c_sel = deepcopy(selected["reference"]["selection"]) - if c_params["parameter"] in ("core", "frmsize", "ttype"): - c_sel[c_params["parameter"]] = [c_params["value"], ] - else: - c_sel[c_params["parameter"]] = c_params["value"] - - c_selection = _create_selection(c_sel) - c_data = select_comp_data(data, c_selection, normalize, remove_outliers) - - if r_data.empty or c_data.empty: - return str(), pd.DataFrame() - l_name, l_r_mean, l_r_std, l_c_mean, l_c_std, l_rc_mean, l_rc_std, unit = \ list(), list(), list(), list(), list(), list(), list(), set() for _, row in r_data.iterrows(): |