diff options
author | Tibor Frank <tifrank@cisco.com> | 2023-04-12 07:55:52 +0200 |
---|---|---|
committer | Tibor Frank <tifrank@cisco.com> | 2023-04-17 08:19:27 +0000 |
commit | 273821dc854ba53015e022600574655160ce1a40 (patch) | |
tree | 7d93cd298c43efca8f783ff0da5908cdd1dc444e /csit.infra.dash/app/cdash/coverage/tables.py | |
parent | ff0913c4c517bc1d3335861ab08dc3d747018b13 (diff) |
C-Dash: Add coverage tables
Signed-off-by: Tibor Frank <tifrank@cisco.com>
Change-Id: I4f20936db02dc4b974134c676c368c479e931038
Diffstat (limited to 'csit.infra.dash/app/cdash/coverage/tables.py')
-rw-r--r-- | csit.infra.dash/app/cdash/coverage/tables.py | 284 |
1 files changed, 284 insertions, 0 deletions
diff --git a/csit.infra.dash/app/cdash/coverage/tables.py b/csit.infra.dash/app/cdash/coverage/tables.py new file mode 100644 index 0000000000..a773a2280c --- /dev/null +++ b/csit.infra.dash/app/cdash/coverage/tables.py @@ -0,0 +1,284 @@ +# Copyright (c) 2023 Cisco and/or its affiliates. +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at: +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +"""The coverage data tables. +""" + +import hdrh.histogram +import hdrh.codec +import pandas as pd +import dash_bootstrap_components as dbc + +from dash import dash_table +from dash.dash_table.Format import Format, Scheme + +from ..utils.constants import Constants as C + + +def select_coverage_data( + data: pd.DataFrame, + selected: dict, + csv: bool=False + ) -> list: + """Select coverage data for the tables and generate tables as pandas data + frames. + + :param data: Coverage data. + :param selected: Dictionary with user selection. + :param csv: If True, pandas data frame with selected coverage data is + returned for "Download Data" feature. + :type data: pandas.DataFrame + :type selected: dict + :type csv: bool + :returns: List of tuples with suite name (str) and data (pandas dataframe) + or pandas dataframe if csv is True. + :rtype: list[tuple[str, pandas.DataFrame], ] or pandas.DataFrame + """ + + l_data = list() + + # Filter data selected by the user. + phy = selected["phy"].split("-") + if len(phy) == 4: + topo, arch, nic, drv = phy + drv = "" if drv == "dpdk" else drv.replace("_", "-") + else: + return l_data + + df = pd.DataFrame(data.loc[( + (data["passed"] == True) & + (data["dut_type"] == selected["dut"]) & + (data["dut_version"] == selected["dutver"]) & + (data["release"] == selected["rls"]) + )]) + df = df[ + (df.job.str.endswith(f"{topo}-{arch}")) & + (df.test_id.str.contains( + f"^.*\.{selected['area']}\..*{nic}.*{drv}.*$", + regex=True + )) + ] + if drv == "dpdk": + for driver in C.DRIVERS: + df.drop( + df[df.test_id.str.contains(f"-{driver}-")].index, + inplace=True + ) + + # Prepare the coverage data + def _latency(hdrh_string: str, percentile: float) -> int: + """Get latency from HDRH string for given percentile. + + :param hdrh_string: Encoded HDRH string. + :param percentile: Given percentile. + :type hdrh_string: str + :type percentile: float + :returns: The latency value for the given percentile from the encoded + HDRH string. + :rtype: int + """ + try: + hdr_lat = hdrh.histogram.HdrHistogram.decode(hdrh_string) + return hdr_lat.get_value_at_percentile(percentile) + except (hdrh.codec.HdrLengthException, TypeError): + return None + + def _get_suite(test_id: str) -> str: + """Get the suite name from the test ID. + """ + return test_id.split(".")[-2].replace("2n1l-", "").\ + replace("1n1l-", "").replace("2n-", "").replace("-ndrpdr", "") + + def _get_test(test_id: str) -> str: + """Get the test name from the test ID. + """ + return test_id.split(".")[-1].replace("-ndrpdr", "") + + cov = pd.DataFrame() + cov["suite"] = df.apply(lambda row: _get_suite(row["test_id"]), axis=1) + cov["Test Name"] = df.apply(lambda row: _get_test(row["test_id"]), axis=1) + cov["Throughput_Unit"] = df["result_pdr_lower_rate_unit"] + cov["Throughput_NDR"] = df.apply( + lambda row: row["result_ndr_lower_rate_value"] / 1e6, axis=1 + ) + cov["Throughput_NDR_Mbps"] = df.apply( + lambda row: row["result_ndr_lower_bandwidth_value"] /1e9, axis=1 + ) + cov["Throughput_PDR"] = \ + df.apply(lambda row: row["result_pdr_lower_rate_value"] / 1e6, axis=1) + cov["Throughput_PDR_Mbps"] = df.apply( + lambda row: row["result_pdr_lower_bandwidth_value"] /1e9, axis=1 + ) + cov["Latency Forward [us]_10% PDR_P50"] = df.apply( + lambda row: _latency(row["result_latency_forward_pdr_10_hdrh"], 50.0), + axis=1 + ) + cov["Latency Forward [us]_10% PDR_P90"] = df.apply( + lambda row: _latency(row["result_latency_forward_pdr_10_hdrh"], 90.0), + axis=1 + ) + cov["Latency Forward [us]_10% PDR_P99"] = df.apply( + lambda row: _latency(row["result_latency_forward_pdr_10_hdrh"], 99.0), + axis=1 + ) + cov["Latency Forward [us]_50% PDR_P50"] = df.apply( + lambda row: _latency(row["result_latency_forward_pdr_50_hdrh"], 50.0), + axis=1 + ) + cov["Latency Forward [us]_50% PDR_P90"] = df.apply( + lambda row: _latency(row["result_latency_forward_pdr_50_hdrh"], 90.0), + axis=1 + ) + cov["Latency Forward [us]_50% PDR_P99"] = df.apply( + lambda row: _latency(row["result_latency_forward_pdr_50_hdrh"], 99.0), + axis=1 + ) + cov["Latency Forward [us]_90% PDR_P50"] = df.apply( + lambda row: _latency(row["result_latency_forward_pdr_90_hdrh"], 50.0), + axis=1 + ) + cov["Latency Forward [us]_90% PDR_P90"] = df.apply( + lambda row: _latency(row["result_latency_forward_pdr_90_hdrh"], 90.0), + axis=1 + ) + cov["Latency Forward [us]_90% PDR_P99"] = df.apply( + lambda row: _latency(row["result_latency_forward_pdr_90_hdrh"], 99.0), + axis=1 + ) + cov["Latency Reverse [us]_10% PDR_P50"] = df.apply( + lambda row: _latency(row["result_latency_reverse_pdr_10_hdrh"], 50.0), + axis=1 + ) + cov["Latency Reverse [us]_10% PDR_P90"] = df.apply( + lambda row: _latency(row["result_latency_reverse_pdr_10_hdrh"], 90.0), + axis=1 + ) + cov["Latency Reverse [us]_10% PDR_P99"] = df.apply( + lambda row: _latency(row["result_latency_reverse_pdr_10_hdrh"], 99.0), + axis=1 + ) + cov["Latency Reverse [us]_50% PDR_P50"] = df.apply( + lambda row: _latency(row["result_latency_reverse_pdr_50_hdrh"], 50.0), + axis=1 + ) + cov["Latency Reverse [us]_50% PDR_P90"] = df.apply( + lambda row: _latency(row["result_latency_reverse_pdr_50_hdrh"], 90.0), + axis=1 + ) + cov["Latency Reverse [us]_50% PDR_P99"] = df.apply( + lambda row: _latency(row["result_latency_reverse_pdr_50_hdrh"], 99.0), + axis=1 + ) + cov["Latency Reverse [us]_90% PDR_P50"] = df.apply( + lambda row: _latency(row["result_latency_reverse_pdr_90_hdrh"], 50.0), + axis=1 + ) + cov["Latency Reverse [us]_90% PDR_P90"] = df.apply( + lambda row: _latency(row["result_latency_reverse_pdr_90_hdrh"], 90.0), + axis=1 + ) + cov["Latency Reverse [us]_90% PDR_P99"] = df.apply( + lambda row: _latency(row["result_latency_reverse_pdr_90_hdrh"], 99.0), + axis=1 + ) + + if csv: + return cov + + # Split data into tabels depending on the test suite. + for suite in cov["suite"].unique().tolist(): + df_suite = pd.DataFrame(cov.loc[(cov["suite"] == suite)]) + unit = df_suite["Throughput_Unit"].tolist()[0] + df_suite.rename( + columns={ + "Throughput_NDR": f"Throughput_NDR_M{unit}", + "Throughput_PDR": f"Throughput_PDR_M{unit}" + }, + inplace=True + ) + df_suite.drop(["suite", "Throughput_Unit"], axis=1, inplace=True) + l_data.append((suite, df_suite, )) + return l_data + + +def coverage_tables(data: pd.DataFrame, selected: dict) -> list: + """Generate an accordion with coverage tables. + + :param data: Coverage data. + :param selected: Dictionary with user selection. + :type data: pandas.DataFrame + :type selected: dict + :returns: Accordion with suite names (titles) and tables. + :rtype: dash_bootstrap_components.Accordion + """ + + accordion_items = list() + for suite, cov_data in select_coverage_data(data, selected): + cols = list() + for idx, col in enumerate(cov_data.columns): + if idx == 0: + cols.append({ + "name": ["", "", col], + "id": col, + "deletable": False, + "selectable": False, + "type": "text" + }) + elif idx < 5: + cols.append({ + "name": col.split("_"), + "id": col, + "deletable": False, + "selectable": False, + "type": "numeric", + "format": Format(precision=2, scheme=Scheme.fixed) + }) + else: + cols.append({ + "name": col.split("_"), + "id": col, + "deletable": False, + "selectable": False, + "type": "numeric", + "format": Format(precision=0, scheme=Scheme.fixed) + }) + + accordion_items.append( + dbc.AccordionItem( + title=suite, + children=dash_table.DataTable( + columns=cols, + data=cov_data.to_dict("records"), + merge_duplicate_headers=True, + editable=True, + filter_action="none", + sort_action="native", + sort_mode="multi", + selected_columns=[], + selected_rows=[], + page_action="none", + style_cell={"textAlign": "right"}, + style_cell_conditional=[{ + "if": {"column_id": "Test Name"}, + "textAlign": "left" + }] + ) + ) + ) + + return dbc.Accordion( + children=accordion_items, + class_name="gy-2 p-0", + start_collapsed=True, + always_open=True + ) |