aboutsummaryrefslogtreecommitdiffstats
path: root/csit.infra.dash/app/cdash/data/data.py
diff options
context:
space:
mode:
authorTibor Frank <tifrank@cisco.com>2023-10-10 08:14:18 +0000
committerTibor Frank <tifrank@cisco.com>2023-10-11 07:38:18 +0000
commit86ec9713ecde3d92ec4585d487ddfac5077428c8 (patch)
tree2918a347f80ccf9d628f9132d7d1a454043fb9ae /csit.infra.dash/app/cdash/data/data.py
parentc3ce59c652caaee06b3090f387f8826c15102703 (diff)
C-Dash: Add bandwidth to trending graphs
- NDRPDR tests only - MRR to be done when data is in parquets Change-Id: If2b1f76d5e2dc6f3a480eeb0950e7ab9550f8901 Signed-off-by: Tibor Frank <tifrank@cisco.com>
Diffstat (limited to 'csit.infra.dash/app/cdash/data/data.py')
-rw-r--r--csit.infra.dash/app/cdash/data/data.py23
1 files changed, 22 insertions, 1 deletions
diff --git a/csit.infra.dash/app/cdash/data/data.py b/csit.infra.dash/app/cdash/data/data.py
index 2bf3649778..783ebe25ff 100644
--- a/csit.infra.dash/app/cdash/data/data.py
+++ b/csit.infra.dash/app/cdash/data/data.py
@@ -30,6 +30,12 @@ from pyarrow.lib import ArrowInvalid, ArrowNotImplementedError
from ..utils.constants import Constants as C
+# If True, pyarrow.Schema is generated. See also condition in the method
+# _write_parquet_schema.
+# To generate schema, select only one data set in data.yaml file.
+GENERATE_SCHEMA = False
+
+
class Data:
"""Gets the data from parquets and stores it for further use by dash
applications.
@@ -212,7 +218,10 @@ class Data:
for itm in df:
try:
# Specify the condition or remove it:
- if pd.api.types.is_string_dtype(itm["result_rate_unit"]):
+ if all((
+ pd.api.types.is_string_dtype(itm["<column_name>"]),
+ pd.api.types.is_string_dtype(itm["telemetry"][0])
+ )):
print(pa.Schema.from_pandas(itm))
pa.parquet.write_metadata(
pa.Schema.from_pandas(itm),
@@ -357,6 +366,18 @@ class Data:
time_period = days
else:
time_period = None
+
+ if GENERATE_SCHEMA:
+ # Generate schema:
+ Data._write_parquet_schema(
+ path=data_set["path"],
+ partition_filter=partition_filter,
+ columns=data_set.get("columns", None),
+ days=time_period
+ )
+ return
+
+ # Read data:
data = Data._create_dataframe_from_parquet(
path=data_set["path"],
partition_filter=partition_filter,