aboutsummaryrefslogtreecommitdiffstats
path: root/csit.infra.dash/app/cdash/report/graphs.py
diff options
context:
space:
mode:
authorTibor Frank <tifrank@cisco.com>2024-07-16 09:33:26 +0000
committerTibor Frank <tifrank@cisco.com>2024-07-17 12:48:44 +0000
commit53b7082b70f15582c223ebe0bddce5feafaed5ba (patch)
treed6450d14e28764d9bcb6f3f932162228433537bb /csit.infra.dash/app/cdash/report/graphs.py
parentfe001acc08f303452b46ba2b2bcbc582f1ba44da (diff)
C-Dash: Make extraction of topo-arch more flexible
Change-Id: I5f59a881d6c23c3e40054a6d829abdcbcafb966b Signed-off-by: Tibor Frank <tifrank@cisco.com>
Diffstat (limited to 'csit.infra.dash/app/cdash/report/graphs.py')
-rw-r--r--csit.infra.dash/app/cdash/report/graphs.py55
1 files changed, 19 insertions, 36 deletions
diff --git a/csit.infra.dash/app/cdash/report/graphs.py b/csit.infra.dash/app/cdash/report/graphs.py
index e13ec54a89..5e57713f11 100644
--- a/csit.infra.dash/app/cdash/report/graphs.py
+++ b/csit.infra.dash/app/cdash/report/graphs.py
@@ -24,7 +24,7 @@ from ..utils.constants import Constants as C
from ..utils.utils import get_color, get_hdrh_latencies
-def select_iterative_data(data: pd.DataFrame, itm:dict) -> pd.DataFrame:
+def select_iterative_data(data: pd.DataFrame, itm: dict) -> pd.DataFrame:
"""Select the data for graphs and tables from the provided data frame.
:param data: Data frame with data for graphs and tables.
@@ -36,9 +36,9 @@ def select_iterative_data(data: pd.DataFrame, itm:dict) -> pd.DataFrame:
:rtype: pandas.DataFrame
"""
- phy = itm["phy"].split("-")
- if len(phy) == 4:
- topo, arch, nic, drv = phy
+ phy = itm["phy"].rsplit("-", maxsplit=2)
+ if len(phy) == 3:
+ topo_arch, nic, drv = phy
if drv == "dpdk":
drv = ""
else:
@@ -61,12 +61,12 @@ def select_iterative_data(data: pd.DataFrame, itm:dict) -> pd.DataFrame:
(data["passed"] == True)
)]
- core = str() if itm["dut"] == "trex" else f"{itm['core']}"
+ core = str() if itm["dut"] == "trex" else itm["core"]
ttype = "ndrpdr" if itm["testtype"] in ("ndr", "pdr") else itm["testtype"]
regex_test = \
f"^.*[.|-]{nic}.*{itm['framesize']}-{core}-{drv}{itm['test']}-{ttype}$"
df = df[
- (df.job.str.endswith(f"{topo}-{arch}")) &
+ (df.job.str.endswith(topo_arch)) &
(df.dut_version.str.contains(itm["dutver"].replace(".r", "-r").\
replace("rls", "release"))) &
(df.test_id.str.contains(regex_test, regex=True))
@@ -96,16 +96,9 @@ def graph_iterative(data: pd.DataFrame, sel: list, layout: dict,
:rtype: tuple(plotly.graph_objects.Figure, plotly.graph_objects.Figure)
"""
- def get_y_values(data, y_data_max, param, norm_factor, release=str(),
+ def get_y_values(data, y_data_max, param, norm_factor,
remove_outliers=False):
- if param == "result_receive_rate_rate_values":
- if release in ("rls2402", "rls2406", "rls2410"):
- y_vals_raw = data["result_receive_rate_rate_avg"].to_list()
- else:
- y_vals_raw = data[param].to_list()[0]
- else:
- y_vals_raw = data[param].to_list()
- y_data = [(y * norm_factor) for y in y_vals_raw]
+ y_data = [(y * norm_factor) for y in data[param].to_list()]
if remove_outliers:
try:
@@ -146,9 +139,9 @@ def graph_iterative(data: pd.DataFrame, sel: list, layout: dict,
if itm_data.empty:
continue
- phy = itm["phy"].split("-")
- topo_arch = f"{phy[0]}-{phy[1]}" if len(phy) == 4 else str()
- norm_factor = (C.NORM_FREQUENCY / C.FREQUENCY[topo_arch]) \
+ phy = itm["phy"].rsplit("-", maxsplit=2)
+ topo_arch = phy[0] if len(phy) == 3 else str()
+ norm_factor = (C.NORM_FREQUENCY / C.FREQUENCY.get(topo_arch, 1.0)) \
if normalize else 1.0
if itm["area"] == "hoststack":
@@ -163,7 +156,6 @@ def graph_iterative(data: pd.DataFrame, sel: list, layout: dict,
y_tput_max,
C.VALUE_ITER[ttype],
norm_factor,
- itm["rls"],
remove_outliers
)
@@ -181,28 +173,19 @@ def graph_iterative(data: pd.DataFrame, sel: list, layout: dict,
)
}
- if itm["testtype"] == "mrr" and itm["rls"] == "rls2310":
- trial_run = "trial"
- metadata["csit-ref"] = (
- f"{itm_data['job'].to_list()[0]}/",
- f"{itm_data['build'].to_list()[0]}"
- )
- customdata = [{"metadata": metadata}, ] * nr_of_samples
- else:
- trial_run = "run"
- for _, row in itm_data.iterrows():
- metadata["csit-ref"] = f"{row['job']}/{row['build']}"
- try:
- metadata["hosts"] = ", ".join(row["hosts"])
- except (KeyError, TypeError):
- pass
- customdata.append({"metadata": deepcopy(metadata)})
+ for _, row in itm_data.iterrows():
+ metadata["csit-ref"] = f"{row['job']}/{row['build']}"
+ try:
+ metadata["hosts"] = ", ".join(row["hosts"])
+ except (KeyError, TypeError):
+ pass
+ customdata.append({"metadata": deepcopy(metadata)})
tput_kwargs = dict(
y=y_data,
name=(
f"{idx + 1}. "
f"({nr_of_samples:02d} "
- f"{trial_run}{'s' if nr_of_samples > 1 else ''}) "
+ f"run{'s' if nr_of_samples > 1 else ''}) "
f"{itm['id']}"
),
hoverinfo=u"y+name",