diff options
author | Tibor Frank <tifrank@cisco.com> | 2024-07-16 09:33:26 +0000 |
---|---|---|
committer | Tibor Frank <tifrank@cisco.com> | 2024-07-17 12:48:44 +0000 |
commit | 53b7082b70f15582c223ebe0bddce5feafaed5ba (patch) | |
tree | d6450d14e28764d9bcb6f3f932162228433537bb /csit.infra.dash/app/cdash/report/graphs.py | |
parent | fe001acc08f303452b46ba2b2bcbc582f1ba44da (diff) |
C-Dash: Make extraction of topo-arch more flexible
Change-Id: I5f59a881d6c23c3e40054a6d829abdcbcafb966b
Signed-off-by: Tibor Frank <tifrank@cisco.com>
Diffstat (limited to 'csit.infra.dash/app/cdash/report/graphs.py')
-rw-r--r-- | csit.infra.dash/app/cdash/report/graphs.py | 55 |
1 files changed, 19 insertions, 36 deletions
diff --git a/csit.infra.dash/app/cdash/report/graphs.py b/csit.infra.dash/app/cdash/report/graphs.py index e13ec54a89..5e57713f11 100644 --- a/csit.infra.dash/app/cdash/report/graphs.py +++ b/csit.infra.dash/app/cdash/report/graphs.py @@ -24,7 +24,7 @@ from ..utils.constants import Constants as C from ..utils.utils import get_color, get_hdrh_latencies -def select_iterative_data(data: pd.DataFrame, itm:dict) -> pd.DataFrame: +def select_iterative_data(data: pd.DataFrame, itm: dict) -> pd.DataFrame: """Select the data for graphs and tables from the provided data frame. :param data: Data frame with data for graphs and tables. @@ -36,9 +36,9 @@ def select_iterative_data(data: pd.DataFrame, itm:dict) -> pd.DataFrame: :rtype: pandas.DataFrame """ - phy = itm["phy"].split("-") - if len(phy) == 4: - topo, arch, nic, drv = phy + phy = itm["phy"].rsplit("-", maxsplit=2) + if len(phy) == 3: + topo_arch, nic, drv = phy if drv == "dpdk": drv = "" else: @@ -61,12 +61,12 @@ def select_iterative_data(data: pd.DataFrame, itm:dict) -> pd.DataFrame: (data["passed"] == True) )] - core = str() if itm["dut"] == "trex" else f"{itm['core']}" + core = str() if itm["dut"] == "trex" else itm["core"] ttype = "ndrpdr" if itm["testtype"] in ("ndr", "pdr") else itm["testtype"] regex_test = \ f"^.*[.|-]{nic}.*{itm['framesize']}-{core}-{drv}{itm['test']}-{ttype}$" df = df[ - (df.job.str.endswith(f"{topo}-{arch}")) & + (df.job.str.endswith(topo_arch)) & (df.dut_version.str.contains(itm["dutver"].replace(".r", "-r").\ replace("rls", "release"))) & (df.test_id.str.contains(regex_test, regex=True)) @@ -96,16 +96,9 @@ def graph_iterative(data: pd.DataFrame, sel: list, layout: dict, :rtype: tuple(plotly.graph_objects.Figure, plotly.graph_objects.Figure) """ - def get_y_values(data, y_data_max, param, norm_factor, release=str(), + def get_y_values(data, y_data_max, param, norm_factor, remove_outliers=False): - if param == "result_receive_rate_rate_values": - if release in ("rls2402", "rls2406", "rls2410"): - y_vals_raw = data["result_receive_rate_rate_avg"].to_list() - else: - y_vals_raw = data[param].to_list()[0] - else: - y_vals_raw = data[param].to_list() - y_data = [(y * norm_factor) for y in y_vals_raw] + y_data = [(y * norm_factor) for y in data[param].to_list()] if remove_outliers: try: @@ -146,9 +139,9 @@ def graph_iterative(data: pd.DataFrame, sel: list, layout: dict, if itm_data.empty: continue - phy = itm["phy"].split("-") - topo_arch = f"{phy[0]}-{phy[1]}" if len(phy) == 4 else str() - norm_factor = (C.NORM_FREQUENCY / C.FREQUENCY[topo_arch]) \ + phy = itm["phy"].rsplit("-", maxsplit=2) + topo_arch = phy[0] if len(phy) == 3 else str() + norm_factor = (C.NORM_FREQUENCY / C.FREQUENCY.get(topo_arch, 1.0)) \ if normalize else 1.0 if itm["area"] == "hoststack": @@ -163,7 +156,6 @@ def graph_iterative(data: pd.DataFrame, sel: list, layout: dict, y_tput_max, C.VALUE_ITER[ttype], norm_factor, - itm["rls"], remove_outliers ) @@ -181,28 +173,19 @@ def graph_iterative(data: pd.DataFrame, sel: list, layout: dict, ) } - if itm["testtype"] == "mrr" and itm["rls"] == "rls2310": - trial_run = "trial" - metadata["csit-ref"] = ( - f"{itm_data['job'].to_list()[0]}/", - f"{itm_data['build'].to_list()[0]}" - ) - customdata = [{"metadata": metadata}, ] * nr_of_samples - else: - trial_run = "run" - for _, row in itm_data.iterrows(): - metadata["csit-ref"] = f"{row['job']}/{row['build']}" - try: - metadata["hosts"] = ", ".join(row["hosts"]) - except (KeyError, TypeError): - pass - customdata.append({"metadata": deepcopy(metadata)}) + for _, row in itm_data.iterrows(): + metadata["csit-ref"] = f"{row['job']}/{row['build']}" + try: + metadata["hosts"] = ", ".join(row["hosts"]) + except (KeyError, TypeError): + pass + customdata.append({"metadata": deepcopy(metadata)}) tput_kwargs = dict( y=y_data, name=( f"{idx + 1}. " f"({nr_of_samples:02d} " - f"{trial_run}{'s' if nr_of_samples > 1 else ''}) " + f"run{'s' if nr_of_samples > 1 else ''}) " f"{itm['id']}" ), hoverinfo=u"y+name", |