aboutsummaryrefslogtreecommitdiffstats
path: root/csit.infra.dash/app/cdash/utils
diff options
context:
space:
mode:
authorTibor Frank <tifrank@cisco.com>2023-06-13 11:07:20 +0000
committerTibor Frank <tifrank@cisco.com>2023-06-13 12:29:33 +0000
commit7669ddf94b93df73c339d41b8094bf95a5247775 (patch)
treec096d5991d39a2c66aa8ab20f3ea0f99ba2e3787 /csit.infra.dash/app/cdash/utils
parent24f60e00079c1bd7a7d07b17912cdf587cb1a33c (diff)
C-Dash: Telemetry - Add option to ignore hosts
Change-Id: Ife92be275a18b07a2b78f57095843d2a65c4bcad Signed-off-by: Tibor Frank <tifrank@cisco.com>
Diffstat (limited to 'csit.infra.dash/app/cdash/utils')
-rw-r--r--csit.infra.dash/app/cdash/utils/telemetry_data.py75
1 files changed, 44 insertions, 31 deletions
diff --git a/csit.infra.dash/app/cdash/utils/telemetry_data.py b/csit.infra.dash/app/cdash/utils/telemetry_data.py
index 9c2e45f9a1..80187967fa 100644
--- a/csit.infra.dash/app/cdash/utils/telemetry_data.py
+++ b/csit.infra.dash/app/cdash/utils/telemetry_data.py
@@ -52,15 +52,17 @@ class TelemetryData:
if in_data.empty:
return
- df = pd.DataFrame()
metrics = set() # A set of unique metrics
# Create a dataframe with metrics for selected tests:
+ lst_items = list()
for itm in self._tests:
sel_data = select_trending_data(in_data, itm)
if sel_data is not None:
sel_data["test_name"] = itm["id"]
- df = pd.concat([df, sel_data], ignore_index=True, copy=False)
+ lst_items.append(sel_data)
+ df = pd.concat(lst_items, ignore_index=True, copy=False)
+
# Use only neccessary data:
df = df[[
"job",
@@ -182,23 +184,20 @@ class TelemetryData:
:rtype: dict
"""
- df_labels = pd.DataFrame()
+ lst_labels = list()
tmp_labels = dict()
for _, row in self._data.iterrows():
telemetry = row["telemetry"]
for itm in metrics:
df = telemetry.loc[(telemetry["metric"] == itm)]
- df_labels = pd.concat(
- [df_labels, df],
- ignore_index=True,
- copy=False
- )
+ lst_labels.append(df)
for _, tm in df.iterrows():
for label in tm["labels"]:
if label[0] not in tmp_labels:
tmp_labels[label[0]] = set()
tmp_labels[label[0]].add(label[1])
+ df_labels = pd.concat(lst_labels, ignore_index=True, copy=False)
selected_labels = dict()
for key in sorted(tmp_labels):
selected_labels[key] = sorted(tmp_labels[key])
@@ -279,17 +278,19 @@ class TelemetryData:
return bool(passed and all(passed))
self._selected_metrics_labels = pd.DataFrame()
+ lst_items = list()
for _, row in self._unique_metrics_labels.iterrows():
if _is_selected(row["labels"], selection):
- self._selected_metrics_labels = pd.concat(
- [self._selected_metrics_labels, row.to_frame().T],
- ignore_index=True,
- axis=0,
- copy=False
- )
+ lst_items.append(row.to_frame().T)
+ self._selected_metrics_labels = \
+ pd.concat(lst_items, ignore_index=True, axis=0, copy=False)
return self._selected_metrics_labels
- def select_tm_trending_data(self, selection: dict) -> pd.DataFrame:
+ def select_tm_trending_data(
+ self,
+ selection: dict,
+ ignore_host: bool = False
+ ) -> pd.DataFrame:
"""Select telemetry data for trending based on user's 'selection'.
The output dataframe includes these columns:
@@ -313,37 +314,49 @@ class TelemetryData:
- "tm_value".
:param selection: User's selection (metrics and labels).
+ :param ignore_host: Ignore 'hostname' and 'hook' labels in metrics.
:type selection: dict
+ :type ignore_host: bool
:returns: Dataframe with selected data.
:rtype: pandas.DataFrame
"""
- df = pd.DataFrame()
-
if self._data is None:
- return df
+ return pd.DataFrame()
if self._data.empty:
- return df
+ return pd.DataFrame()
if not selection:
- return df
+ return pd.DataFrame()
df_sel = pd.DataFrame.from_dict(selection)
+ lst_rows = list()
for _, row in self._data.iterrows():
tm_row = row["telemetry"]
for _, tm_sel in df_sel.iterrows():
df_tmp = tm_row.loc[tm_row["metric"] == tm_sel["metric"]]
for _, tm in df_tmp.iterrows():
- if tm["labels"] == tm_sel["labels"]:
- labels = ','.join(
- [f"{itm[0]}='{itm[1]}'" for itm in tm["labels"]]
- )
+ do_it = False
+ if ignore_host:
+ if tm["labels"][2:] == tm_sel["labels"][2:]:
+ labels = ','.join(
+ [f"{i[0]}='{i[1]}'" for i in tm["labels"][2:]]
+ )
+ do_it = True
+ else:
+ if tm["labels"] == tm_sel["labels"]:
+ labels = ','.join(
+ [f"{i[0]}='{i[1]}'" for i in tm["labels"]]
+ )
+ do_it = True
+ if do_it:
row["tm_metric"] = f"{tm['metric']}{{{labels}}}"
row["tm_value"] = tm["value"]
- new_row = row.drop(labels=["telemetry", ])
- df = pd.concat(
- [df, new_row.to_frame().T],
- ignore_index=True,
- axis=0,
- copy=False
+ lst_rows.append(
+ row.drop(labels=["telemetry", ]).to_frame().T
)
- return df
+ if lst_rows:
+ return pd.concat(
+ lst_rows, ignore_index=True, axis=0, copy=False
+ ).drop_duplicates()
+ else:
+ return pd.DataFrame()