diff options
author | pmikus <peter.mikus@protonmail.ch> | 2022-10-05 08:58:31 +0200 |
---|---|---|
committer | pmikus <peter.mikus@protonmail.ch> | 2022-10-05 08:58:31 +0200 |
commit | af8e703eb180e46ca65ff0c165a21f2261896548 (patch) | |
tree | e477719c9010ca3e8ed3ffa63ffe293a2734d358 /csit.infra.dash/app/pal/data/data.py | |
parent | 4d095b586bc4e249ab4e30e1a3f17b310f52a229 (diff) |
fix(cdash): Rename
Signed-off-by: pmikus <peter.mikus@protonmail.ch>
Change-Id: Ia6dff2674a28b42ebfbe91230587f1e175ae1137
Diffstat (limited to 'csit.infra.dash/app/pal/data/data.py')
-rw-r--r-- | csit.infra.dash/app/pal/data/data.py | 351 |
1 files changed, 0 insertions, 351 deletions
diff --git a/csit.infra.dash/app/pal/data/data.py b/csit.infra.dash/app/pal/data/data.py deleted file mode 100644 index 77fd113a9c..0000000000 --- a/csit.infra.dash/app/pal/data/data.py +++ /dev/null @@ -1,351 +0,0 @@ -# Copyright (c) 2022 Cisco and/or its affiliates. -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at: -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -"""Prepare data for Plotly Dash applications. -""" - -import logging -import awswrangler as wr - -from yaml import load, FullLoader, YAMLError -from datetime import datetime, timedelta -from time import time -from pytz import UTC -from pandas import DataFrame -from awswrangler.exceptions import EmptyDataFrame, NoFilesFound - - -class Data: - """Gets the data from parquets and stores it for further use by dash - applications. - """ - - def __init__(self, data_spec_file: str, debug: bool=False) -> None: - """Initialize the Data object. - - :param data_spec_file: Path to file specifying the data to be read from - parquets. - :param debug: If True, the debuf information is printed to stdout. - :type data_spec_file: str - :type debug: bool - :raises RuntimeError: if it is not possible to open data_spec_file or it - is not a valid yaml file. - """ - - # Inputs: - self._data_spec_file = data_spec_file - self._debug = debug - - # Specification of data to be read from parquets: - self._data_spec = None - - # Data frame to keep the data: - self._data = None - - # Read from files: - try: - with open(self._data_spec_file, "r") as file_read: - self._data_spec = load(file_read, Loader=FullLoader) - except IOError as err: - raise RuntimeError( - f"Not possible to open the file {self._data_spec_file,}\n{err}" - ) - except YAMLError as err: - raise RuntimeError( - f"An error occurred while parsing the specification file " - f"{self._data_spec_file,}\n" - f"{err}" - ) - - @property - def data(self): - return self._data - - def _get_columns(self, parquet: str) -> list: - """Get the list of columns from the data specification file to be read - from parquets. - - :param parquet: The parquet's name. - :type parquet: str - :raises RuntimeError: if the parquet is not defined in the data - specification file or it does not have any columns specified. - :returns: List of columns. - :rtype: list - """ - - try: - return self._data_spec[parquet]["columns"] - except KeyError as err: - raise RuntimeError( - f"The parquet {parquet} is not defined in the specification " - f"file {self._data_spec_file} or it does not have any columns " - f"specified.\n{err}" - ) - - def _get_path(self, parquet: str) -> str: - """Get the path from the data specification file to be read from - parquets. - - :param parquet: The parquet's name. - :type parquet: str - :raises RuntimeError: if the parquet is not defined in the data - specification file or it does not have the path specified. - :returns: Path. - :rtype: str - """ - - try: - return self._data_spec[parquet]["path"] - except KeyError as err: - raise RuntimeError( - f"The parquet {parquet} is not defined in the specification " - f"file {self._data_spec_file} or it does not have the path " - f"specified.\n{err}" - ) - - def _get_list_of_files(self, - path, - last_modified_begin=None, - last_modified_end=None, - days=None) -> list: - """Get list of interested files stored in S3 compatible storage and - returns it. - - :param path: S3 prefix (accepts Unix shell-style wildcards) - (e.g. s3://bucket/prefix) or list of S3 objects paths - (e.g. [s3://bucket/key0, s3://bucket/key1]). - :param last_modified_begin: Filter the s3 files by the Last modified - date of the object. The filter is applied only after list all s3 - files. - :param last_modified_end: Filter the s3 files by the Last modified date - of the object. The filter is applied only after list all s3 files. - :param days: Number of days to filter. - :type path: Union[str, List[str]] - :type last_modified_begin: datetime, optional - :type last_modified_end: datetime, optional - :type days: integer, optional - :returns: List of file names. - :rtype: List - """ - if days: - last_modified_begin = datetime.now(tz=UTC) - timedelta(days=days) - try: - file_list = wr.s3.list_objects( - path=path, - suffix="parquet", - last_modified_begin=last_modified_begin, - last_modified_end=last_modified_end - ) - if self._debug: - logging.info("\n".join(file_list)) - except NoFilesFound as err: - logging.error(f"No parquets found.\n{err}") - except EmptyDataFrame as err: - logging.error(f"No data.\n{err}") - - return file_list - - def _create_dataframe_from_parquet(self, - path, partition_filter=None, - columns=None, - validate_schema=False, - last_modified_begin=None, - last_modified_end=None, - days=None) -> DataFrame: - """Read parquet stored in S3 compatible storage and returns Pandas - Dataframe. - - :param path: S3 prefix (accepts Unix shell-style wildcards) - (e.g. s3://bucket/prefix) or list of S3 objects paths - (e.g. [s3://bucket/key0, s3://bucket/key1]). - :param partition_filter: Callback Function filters to apply on PARTITION - columns (PUSH-DOWN filter). This function MUST receive a single - argument (Dict[str, str]) where keys are partitions names and values - are partitions values. Partitions values will be always strings - extracted from S3. This function MUST return a bool, True to read - the partition or False to ignore it. Ignored if dataset=False. - :param columns: Names of columns to read from the file(s). - :param validate_schema: Check that individual file schemas are all the - same / compatible. Schemas within a folder prefix should all be the - same. Disable if you have schemas that are different and want to - disable this check. - :param last_modified_begin: Filter the s3 files by the Last modified - date of the object. The filter is applied only after list all s3 - files. - :param last_modified_end: Filter the s3 files by the Last modified date - of the object. The filter is applied only after list all s3 files. - :param days: Number of days to filter. - :type path: Union[str, List[str]] - :type partition_filter: Callable[[Dict[str, str]], bool], optional - :type columns: List[str], optional - :type validate_schema: bool, optional - :type last_modified_begin: datetime, optional - :type last_modified_end: datetime, optional - :type days: integer, optional - :returns: Pandas DataFrame or None if DataFrame cannot be fetched. - :rtype: DataFrame - """ - df = None - start = time() - if days: - last_modified_begin = datetime.now(tz=UTC) - timedelta(days=days) - try: - df = wr.s3.read_parquet( - path=path, - path_suffix="parquet", - ignore_empty=True, - validate_schema=validate_schema, - use_threads=True, - dataset=True, - columns=columns, - partition_filter=partition_filter, - last_modified_begin=last_modified_begin, - last_modified_end=last_modified_end - ) - if self._debug: - df.info(verbose=True, memory_usage='deep') - logging.info( - u"\n" - f"Creation of dataframe {path} took: {time() - start}" - u"\n" - ) - except NoFilesFound as err: - logging.error(f"No parquets found.\n{err}") - except EmptyDataFrame as err: - logging.error(f"No data.\n{err}") - - self._data = df - return df - - def check_datasets(self, days: int=None): - """Read structure from parquet. - - :param days: Number of days back to the past for which the data will be - read. - :type days: int - """ - self._get_list_of_files(path=self._get_path("trending"), days=days) - self._get_list_of_files(path=self._get_path("statistics"), days=days) - - def read_stats(self, days: int=None) -> tuple: - """Read statistics from parquet. - - It reads from: - - Suite Result Analysis (SRA) partition, - - NDRPDR trending partition, - - MRR trending partition. - - :param days: Number of days back to the past for which the data will be - read. - :type days: int - :returns: tuple of pandas DataFrame-s with data read from specified - parquets. - :rtype: tuple of pandas DataFrame-s - """ - - l_stats = lambda part: True if part["stats_type"] == "sra" else False - l_mrr = lambda part: True if part["test_type"] == "mrr" else False - l_ndrpdr = lambda part: True if part["test_type"] == "ndrpdr" else False - - return ( - self._create_dataframe_from_parquet( - path=self._get_path("statistics"), - partition_filter=l_stats, - columns=self._get_columns("statistics"), - days=days - ), - self._create_dataframe_from_parquet( - path=self._get_path("statistics-trending-mrr"), - partition_filter=l_mrr, - columns=self._get_columns("statistics-trending-mrr"), - days=days - ), - self._create_dataframe_from_parquet( - path=self._get_path("statistics-trending-ndrpdr"), - partition_filter=l_ndrpdr, - columns=self._get_columns("statistics-trending-ndrpdr"), - days=days - ) - ) - - def read_trending_mrr(self, days: int=None) -> DataFrame: - """Read MRR data partition from parquet. - - :param days: Number of days back to the past for which the data will be - read. - :type days: int - :returns: Pandas DataFrame with read data. - :rtype: DataFrame - """ - - lambda_f = lambda part: True if part["test_type"] == "mrr" else False - - return self._create_dataframe_from_parquet( - path=self._get_path("trending-mrr"), - partition_filter=lambda_f, - columns=self._get_columns("trending-mrr"), - days=days - ) - - def read_trending_ndrpdr(self, days: int=None) -> DataFrame: - """Read NDRPDR data partition from iterative parquet. - - :param days: Number of days back to the past for which the data will be - read. - :type days: int - :returns: Pandas DataFrame with read data. - :rtype: DataFrame - """ - - lambda_f = lambda part: True if part["test_type"] == "ndrpdr" else False - - return self._create_dataframe_from_parquet( - path=self._get_path("trending-ndrpdr"), - partition_filter=lambda_f, - columns=self._get_columns("trending-ndrpdr"), - days=days - ) - - def read_iterative_mrr(self, release: str) -> DataFrame: - """Read MRR data partition from iterative parquet. - - :param release: The CSIT release from which the data will be read. - :type release: str - :returns: Pandas DataFrame with read data. - :rtype: DataFrame - """ - - lambda_f = lambda part: True if part["test_type"] == "mrr" else False - - return self._create_dataframe_from_parquet( - path=self._get_path("iterative-mrr").format(release=release), - partition_filter=lambda_f, - columns=self._get_columns("iterative-mrr") - ) - - def read_iterative_ndrpdr(self, release: str) -> DataFrame: - """Read NDRPDR data partition from parquet. - - :param release: The CSIT release from which the data will be read. - :type release: str - :returns: Pandas DataFrame with read data. - :rtype: DataFrame - """ - - lambda_f = lambda part: True if part["test_type"] == "ndrpdr" else False - - return self._create_dataframe_from_parquet( - path=self._get_path("iterative-ndrpdr").format(release=release), - partition_filter=lambda_f, - columns=self._get_columns("iterative-ndrpdr") - ) |