diff options
author | Peter Mikus <pmikus@cisco.com> | 2022-02-22 11:00:47 +0100 |
---|---|---|
committer | Peter Mikus <pmikus@cisco.com> | 2022-02-24 08:01:53 +0000 |
commit | 54fd337e30acc97434b33a6d0d3c19e4aa3051ab (patch) | |
tree | 5d131a1d7c0846a209e85380b66dfc7770cbe32e /csit.infra.etl/stats.py | |
parent | b2cb835b34c7404b2aaee3ec30700c67537da66d (diff) |
feat(uti): etl
Signed-off-by: Peter Mikus <pmikus@cisco.com>
Change-Id: I7cdcdcbf1e4986664d5d48357688185319f67b0c
Diffstat (limited to 'csit.infra.etl/stats.py')
-rw-r--r-- | csit.infra.etl/stats.py | 133 |
1 files changed, 133 insertions, 0 deletions
diff --git a/csit.infra.etl/stats.py b/csit.infra.etl/stats.py new file mode 100644 index 0000000000..ab8bcafdeb --- /dev/null +++ b/csit.infra.etl/stats.py @@ -0,0 +1,133 @@ +#!/usr/bin/env python3 + +# Copyright (c) 2022 Cisco and/or its affiliates. +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at: +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +"""ETL script running on top of the s3://""" + +from datetime import datetime, timedelta +from json import load +from os import environ +from pytz import utc + +import awswrangler as wr +from awswrangler.exceptions import EmptyDataFrame +from awsglue.context import GlueContext +from boto3 import session +from pyspark.context import SparkContext +from pyspark.sql.functions import lit +from pyspark.sql.types import StructType + +S3_LOGS_BUCKET="fdio-logs-s3-cloudfront-index" +S3_DOCS_BUCKET="fdio-docs-s3-cloudfront-index" +PATH=f"s3://{S3_LOGS_BUCKET}/vex-yul-rot-jenkins-1/csit-*-perf-*" +SUFFIX="suite.info.json.gz" +IGNORE_SUFFIX=[] +LAST_MODIFIED_END=utc.localize( + datetime.strptime( + f"{datetime.now().year}-{datetime.now().month}-{datetime.now().day}", + "%Y-%m-%d" + ) +) +LAST_MODIFIED_BEGIN=LAST_MODIFIED_END - timedelta(1) + + +def process_json_to_dataframe(schema_name, paths): + """Processes JSON to Spark DataFrame. + + :param schema_name: Schema name. + :type schema_name: string + :param paths: S3 paths to process. + :type paths: list + :returns: Spark DataFrame. + :rtype: DataFrame + """ + drop_subset = [ + "duration", + "version" + ] + + # load schemas + with open(f"stats_{schema_name}.json", "r", encoding="UTF-8") as f_schema: + schema = StructType.fromJson(load(f_schema)) + + # create empty DF out of schemas + sdf = spark.createDataFrame([], schema) + + # filter list + filtered = [path for path in paths if "tests/suite.info.json.gz" in path] + + # select + for path in filtered: + print(path) + + sdf_loaded = spark \ + .read \ + .option("multiline", "true") \ + .schema(schema) \ + .json(path) \ + .withColumn("job", lit(path.split("/")[4])) \ + .withColumn("build", lit(path.split("/")[5])) \ + .withColumn("stats_type", lit(schema_name)) + sdf = sdf.unionByName(sdf_loaded, allowMissingColumns=True) + + # drop rows with all nulls and drop rows with null in critical frames + sdf = sdf.na.drop(how="all") + sdf = sdf.na.drop(how="any", thresh=None, subset=drop_subset) + + return sdf + + +# create SparkContext and GlueContext +spark_context = SparkContext.getOrCreate() +spark_context.setLogLevel("WARN") +glue_context = GlueContext(spark_context) +spark = glue_context.spark_session + +# files of interest +paths = wr.s3.list_objects( + path=PATH, + suffix=SUFFIX, + last_modified_begin=LAST_MODIFIED_BEGIN, + last_modified_end=LAST_MODIFIED_END, + ignore_suffix=IGNORE_SUFFIX, + ignore_empty=True +) + +for schema_name in ["sra"]: + out_sdf = process_json_to_dataframe(schema_name, paths) + out_sdf.show(truncate=False) + out_sdf.printSchema() + out_sdf = out_sdf \ + .withColumn("year", lit(datetime.now().year)) \ + .withColumn("month", lit(datetime.now().month)) \ + .withColumn("day", lit(datetime.now().day)) \ + .repartition(1) + + try: + wr.s3.to_parquet( + df=out_sdf.toPandas(), + path=f"s3://{S3_DOCS_BUCKET}/csit/parquet/stats", + dataset=True, + partition_cols=["stats_type", "year", "month", "day"], + compression="snappy", + use_threads=True, + mode="overwrite_partitions", + boto3_session=session.Session( + aws_access_key_id=environ["OUT_AWS_ACCESS_KEY_ID"], + aws_secret_access_key=environ["OUT_AWS_SECRET_ACCESS_KEY"], + region_name=environ["OUT_AWS_DEFAULT_REGION"] + ) + ) + except EmptyDataFrame: + pass |