diff options
author | Vratko Polak <vrpolak@cisco.com> | 2019-04-16 18:59:33 +0200 |
---|---|---|
committer | Tibor Frank <tifrank@cisco.com> | 2019-04-18 08:29:21 +0000 |
commit | 4f2d0c379b50b66e70d9615fc8425cd4772f7738 (patch) | |
tree | a74671303729c6eb50475b179463e64ef8cdfc64 /docs/cpta/methodology/trend_analysis.rst | |
parent | 07111b63caa5f162c0921b5a91a4de2d13505a7d (diff) |
Add perpatch info to cpta methodology
Also, split methodology file into multiple, per section.
Change-Id: I973b93d1a99205d7adb80996a3657215e05b8985
Signed-off-by: Vratko Polak <vrpolak@cisco.com>
Diffstat (limited to 'docs/cpta/methodology/trend_analysis.rst')
-rw-r--r-- | docs/cpta/methodology/trend_analysis.rst | 106 |
1 files changed, 106 insertions, 0 deletions
diff --git a/docs/cpta/methodology/trend_analysis.rst b/docs/cpta/methodology/trend_analysis.rst new file mode 100644 index 0000000000..9916f20350 --- /dev/null +++ b/docs/cpta/methodology/trend_analysis.rst @@ -0,0 +1,106 @@ +Trend Analysis +-------------- + +All measured performance trend data is treated as time-series data that +can be modelled as concatenation of groups, each group modelled +using normal distribution. While sometimes the samples within a group +are far from being distributed normally, currently we do not have a +better tractable model. + +Here, "sample" should be the result of single trial measurement, +with group boundaries set only at test run granularity. +But in order to avoid detecting causes unrelated to VPP performance, +the default presentation (without /new/ in URL) +takes average of all trials within the run as the sample. +Effectively, this acts as a single trial with aggregate duration. + +Performance graphs always show the run average (not all trial results). + +The group boundaries are selected based on `Minimum Description Length`_. + +Minimum Description Length +`````````````````````````` + +`Minimum Description Length`_ (MDL) is a particular formalization +of `Occam's razor`_ principle. + +The general formulation mandates to evaluate a large set of models, +but for anomaly detection purposes, it is useful to consider +a smaller set of models, so that scoring and comparing them is easier. + +For each candidate model, the data should be compressed losslessly, +which includes model definitions, encoded model parameters, +and the raw data encoded based on probabilities computed by the model. +The model resulting in shortest compressed message is the "the" correct model. + +For our model set (groups of normally distributed samples), +we need to encode group length (which penalizes too many groups), +group average (more on that later), group stdev and then all the samples. + +Luckily, the "all the samples" part turns out to be quite easy to compute. +If sample values are considered as coordinates in (multi-dimensional) +Euclidean space, fixing stdev means the point with allowed coordinates +lays on a sphere. Fixing average intersects the sphere with a (hyper)-plane, +and Gaussian probability density on the resulting sphere is constant. +So the only contribution is the "area" of the sphere, which only depends +on the number of samples and stdev. + +A somehow ambiguous part is in choosing which encoding +is used for group size, average and stdev. +Different encodings cause different biases to large or small values. +In our implementation we have chosen probability density +corresponding to uniform distribution (from zero to maximal sample value) +for stdev and average of the first group, +but for averages of subsequent groups we have chosen a distribution +which disourages delimiting groups with averages close together. + +Our implementation assumes that measurement precision is 1.0 pps. +Thus it is slightly wrong for trial durations other than 1.0 seconds. +Also, all the calculations assume 1.0 pps is totally negligible, +compared to stdev value. + +The group selection algorithm currently has no parameters, +all the aforementioned encodings and handling of precision is hardcoded. +In principle, every group selection is examined, and the one encodable +with least amount of bits is selected. +As the bit amount for a selection is just sum of bits for every group, +finding the best selection takes number of comparisons +quadratically increasing with the size of data, +the overall time complexity being probably cubic. + +The resulting group distribution looks good +if samples are distributed normally enough within a group. +But for obviously different distributions (for example `bimodal distribution`_) +the groups tend to focus on less relevant factors (such as "outlier" density). + +Anomaly Detection +````````````````` + +Once the trend data is divided into groups, each group has its population average. +The start of the following group is marked as a regression (or progression) +if the new group's average is lower (higher) then the previous group's. + +In the text below, "average at time <t>", shorthand "AVG[t]" +means "the group average of the group the sample at time <t> belongs to". + +Trend Compliance +```````````````` + +Trend compliance metrics are targeted to provide an indication of trend +changes over a short-term (i.e. weekly) and a long-term (i.e. +quarterly), comparing the last group average AVG[last], to the one from week +ago, AVG[last - 1week] and to the maximum of trend values over last +quarter except last week, max(AVG[last - 3mths]..ANV[last - 1week]), +respectively. This results in following trend compliance calculations: + ++-------------------------+---------------------------------+-----------+-------------------------------------------+ +| Trend Compliance Metric | Trend Change Formula | Value | Reference | ++=========================+=================================+===========+===========================================+ +| Short-Term Change | (Value - Reference) / Reference | AVG[last] | AVG[last - 1week] | ++-------------------------+---------------------------------+-----------+-------------------------------------------+ +| Long-Term Change | (Value - Reference) / Reference | AVG[last] | max(AVG[last - 3mths]..AVG[last - 1week]) | ++-------------------------+---------------------------------+-----------+-------------------------------------------+ + +.. _Minimum Description Length: https://en.wikipedia.org/wiki/Minimum_description_length +.. _Occam's razor: https://en.wikipedia.org/wiki/Occam%27s_razor +.. _bimodal distribution: https://en.wikipedia.org/wiki/Bimodal_distribution |