diff options
author | Peter Mikus <pmikus@cisco.com> | 2019-08-09 07:48:43 +0000 |
---|---|---|
committer | Tibor Frank <tifrank@cisco.com> | 2019-08-09 08:29:19 +0000 |
commit | ce1c52b1fd27d3e2b6c4909219fa98418565ba61 (patch) | |
tree | 80d95c9987fbf21e0d41507b4740034562912812 /docs/report/introduction | |
parent | d6c832b02ac7d3073dd8651b089a72ec8240b183 (diff) |
DOC: rls1908 static content
Signed-off-by: Peter Mikus <pmikus@cisco.com>
Change-Id: Ia0778acc543a51fe85b8a75162f12905badaa382
Diffstat (limited to 'docs/report/introduction')
10 files changed, 418 insertions, 438 deletions
diff --git a/docs/report/introduction/methodology_kvm_vms_vhost_user.rst b/docs/report/introduction/methodology_kvm_vms_vhost_user.rst index 79f1134881..e6a98596da 100644 --- a/docs/report/introduction/methodology_kvm_vms_vhost_user.rst +++ b/docs/report/introduction/methodology_kvm_vms_vhost_user.rst @@ -9,25 +9,7 @@ to the QEMU binary can be adjusted in `Constants.py`. FD.io CSIT performance lab is testing VPP vhost-user with KVM VMs using following environment settings: -- Tests with varying QEMU virtio queue (a.k.a. vring) sizes: [vr1024] - 1024 descriptors to optimize for packet throughput. -- Tests with varying Linux :abbr:`CFS (Completely Fair Scheduler)` - settings: i) [cfs] default settings, ii) [cfsrr1] CFS RoundRobin(1) - policy applied to all data plane threads handling test packet path - including all VPP worker threads and all QEMU testpmd poll-mode - threads. -- Resulting test cases are all combinations with [vr1024] and - [cfs,cfsrr1] settings. -- Adjusted Linux kernel :abbr:`CFS (Completely Fair Scheduler)` - scheduler policy for data plane threads used in CSIT is documented in - `CSIT Performance Environment Tuning wiki - <https://wiki.fd.io/view/CSIT/csit-perf-env-tuning-ubuntu1604>`_. - -Testing with different CFS settings enables verifying the impact of -making VPP and VM data plane threads less susceptible to other Linux OS -system tasks hijacking CPU cores running those data plane threads. - -CSIT supports two types of VMs: +CSIT supports two types of VMs: - **Image-VM**: used for all functional, VPP_device, and regular performance tests except NFV density tests. @@ -83,10 +65,10 @@ Example of custom init script for the kernel-VM: mount -t hugetlbfs -o "rw,relatime,pagesize=2M" hugetlbfs /dev/hugepages echo 0000:00:06.0 > /sys/bus/pci/devices/0000:00:06.0/driver/unbind echo 0000:00:07.0 > /sys/bus/pci/devices/0000:00:07.0/driver/unbind - echo uio_pci_generic > /sys/bus/pci/devices/0000:00:06.0/driver_override - echo uio_pci_generic > /sys/bus/pci/devices/0000:00:07.0/driver_override - echo 0000:00:06.0 > /sys/bus/pci/drivers/uio_pci_generic/bind - echo 0000:00:07.0 > /sys/bus/pci/drivers/uio_pci_generic/bind + echo vfio-pci > /sys/bus/pci/devices/0000:00:06.0/driver_override + echo vfio-pci > /sys/bus/pci/devices/0000:00:07.0/driver_override + echo 0000:00:06.0 > /sys/bus/pci/drivers/vfio-pci/bind + echo 0000:00:07.0 > /sys/bus/pci/drivers/vfio-pci/bind $vnf_bin poweroff -f diff --git a/docs/report/introduction/methodology_trex_traffic_generator.rst b/docs/report/introduction/methodology_trex_traffic_generator.rst index 2a25931faa..918a34f73d 100644 --- a/docs/report/introduction/methodology_trex_traffic_generator.rst +++ b/docs/report/introduction/methodology_trex_traffic_generator.rst @@ -22,11 +22,11 @@ is: - TRex is started in the background mode :: - $ sh -c 'cd <t-rex-install-dir>/scripts/ && sudo nohup ./t-rex-64 -i -c 7 --iom 0 > /tmp/trex.log 2>&1 &' > /dev/null + $ sh -c 'cd <t-rex-install-dir>/scripts/ && sudo nohup ./t-rex-64 -i -c 7 > /tmp/trex.log 2>&1 &' > /dev/null - There are traffic streams dynamically prepared for each test, based on traffic profiles. The traffic is sent and the statistics obtained using - :command:`trex_stl_lib.api.STLClient`. + :command:`trex.stl.api.STLClient`. Measuring Packet Loss ~~~~~~~~~~~~~~~~~~~~~ diff --git a/docs/report/introduction/methodology_vpp_device_functional.rst b/docs/report/introduction/methodology_vpp_device_functional.rst index 41a8040ef6..0c29624419 100644 --- a/docs/report/introduction/methodology_vpp_device_functional.rst +++ b/docs/report/introduction/methodology_vpp_device_functional.rst @@ -1,13 +1,11 @@ VPP_Device Functional --------------------- -|csit-release| added new VPP_Device test environment for functional VPP +|csit-release| includes VPP_Device test environment for functional VPP device tests integrated into LFN CI/CD infrastructure. VPP_Device tests run on 1-Node testbeds (1n-skx, 1n-arm) and rely on Linux SRIOV Virtual Function (VF), dot1q VLAN tagging and external loopback cables to facilitate packet passing over exernal physical links. Initial focus is -on few baseline tests. Existing CSIT VIRL tests can be moved to -VPP_Device framework by changing L1 and L2 KW(s). RF test definition -code stays unchanged with the exception of requiring adjustments from -3-Node to 2-Node logical topologies. CSIT VIRL to VPP_Device migration -is expected in the next CSIT release. +on few baseline tests. Existing CSIT Performance tests can be moved to +VPP_Device framework. RF test definition code stays unchanged with the +exception of traffic generator related L2 KWs. diff --git a/docs/report/introduction/test_environment_sut_conf_2.rst b/docs/report/introduction/test_environment_sut_conf_2.rst deleted file mode 100644 index 24fcd741e9..0000000000 --- a/docs/report/introduction/test_environment_sut_conf_2.rst +++ /dev/null @@ -1,38 +0,0 @@ - -Linux CFS Tunings -~~~~~~~~~~~~~~~~~ - -Linux CFS scheduler tunings are applied to all QEMU vCPU worker threads -(the ones handling testpmd PMD threads) and VPP data plane worker -threads. List of VPP data plane threads can be obtained by running: - -:: - - $ for psid in $(pgrep vpp) - $ do - $ for tid in $(ps -Lo tid --pid $psid | grep -v TID) - $ do - $ echo $tid - $ done - $ done - -Or: - -:: - - $ cat /proc/`pidof vpp`/task/*/stat | awk '{print $1" "$2" "$39}' - -CFS round-robin scheduling with highest priority is applied using: - -:: - - $ for psid in $(pgrep vpp) - $ do - $ for tid in $(ps -Lo tid --pid $psid | grep -v TID) - $ do - $ chrt -r -p 1 $tid - $ done - $ done - -More information about Linux CFS can be found in `Sched manual pages -<http://man7.org/linux/man-pages/man7/sched.7.html>`_. diff --git a/docs/report/introduction/test_environment_sut_conf_3.rst b/docs/report/introduction/test_environment_sut_conf_3.rst deleted file mode 100644 index 20dc155058..0000000000 --- a/docs/report/introduction/test_environment_sut_conf_3.rst +++ /dev/null @@ -1,9 +0,0 @@ - -Host Writeback Affinity -~~~~~~~~~~~~~~~~~~~~~~~ - -Writebacks are pinned to core 0. The same configuration is applied in host Linux and guest VM. - -:: - - $ echo 1 | sudo tee /sys/bus/workqueue/devices/writeback/cpumask diff --git a/docs/report/introduction/test_environment_sut_meltspec_dnv.rst b/docs/report/introduction/test_environment_sut_meltspec_dnv.rst index 71d1b6808f..a83869ba03 100644 --- a/docs/report/introduction/test_environment_sut_meltspec_dnv.rst +++ b/docs/report/introduction/test_environment_sut_meltspec_dnv.rst @@ -6,121 +6,144 @@ system is vulnerable against the several "speculative execution" CVEs that were made public in 2018. Script is available on `Spectre & Meltdown Checker Github <https://github.com/speed47/spectre-meltdown-checker>`_. -- CVE-2017-5753 [bounds check bypass] aka 'Spectre Variant 1' -- CVE-2017-5715 [branch target injection] aka 'Spectre Variant 2' -- CVE-2017-5754 [rogue data cache load] aka 'Meltdown' aka 'Variant 3' -- CVE-2018-3640 [rogue system register read] aka 'Variant 3a' -- CVE-2018-3639 [speculative store bypass] aka 'Variant 4' -- CVE-2018-3615 [L1 terminal fault] aka 'Foreshadow (SGX)' -- CVE-2018-3620 [L1 terminal fault] aka 'Foreshadow-NG (OS)' -- CVE-2018-3646 [L1 terminal fault] aka 'Foreshadow-NG (VMM)' - :: - $ sudo ./spectre-meltdown-checker.sh --no-color - - Spectre and Meltdown mitigation detection tool v0.40 - - Checking for vulnerabilities on current system - Kernel is Linux 4.15.0-36-generic #39~16.04.1-Ubuntu SMP Tue Sep 25 08:59:23 UTC 2018 x86_64 - CPU is Intel(R) Atom(TM) CPU C3858 @ 2.00GHz - - Hardware check - * Hardware support (CPU microcode) for mitigation techniques - * Indirect Branch Restricted Speculation (IBRS) - * SPEC_CTRL MSR is available: YES - * CPU indicates IBRS capability: YES (SPEC_CTRL feature bit) - * Indirect Branch Prediction Barrier (IBPB) - * PRED_CMD MSR is available: YES - * CPU indicates IBPB capability: YES (SPEC_CTRL feature bit) - * Single Thread Indirect Branch Predictors (STIBP) - * SPEC_CTRL MSR is available: YES - * CPU indicates STIBP capability: YES (Intel STIBP feature bit) - * Speculative Store Bypass Disable (SSBD) - * CPU indicates SSBD capability: YES (Intel SSBD) - * L1 data cache invalidation - * FLUSH_CMD MSR is available: NO - * CPU indicates L1D flush capability: NO - * Enhanced IBRS (IBRS_ALL) - * CPU indicates ARCH_CAPABILITIES MSR availability: YES - * ARCH_CAPABILITIES MSR advertises IBRS_ALL capability: NO - * CPU explicitly indicates not being vulnerable to Meltdown (RDCL_NO): YES - * CPU explicitly indicates not being vulnerable to Variant 4 (SSB_NO): NO - * CPU/Hypervisor indicates L1D flushing is not necessary on this system: YES - * Hypervisor indicates host CPU might be vulnerable to RSB underflow (RSBA): NO - * CPU supports Software Guard Extensions (SGX): NO - * CPU microcode is known to cause stability problems: NO (model 0x5f family 0x6 stepping 0x1 ucode 0x24 cpuid 0x506f1) - * CPU microcode is the latest known available version: YES (latest version is 0x24 dated 2018/05/11 according to builtin MCExtractor DB v84 - 2018/09/27) - * CPU vulnerability to the speculative execution attack variants - * Vulnerable to CVE-2017-5753 (Spectre Variant 1, bounds check bypass): YES - * Vulnerable to CVE-2017-5715 (Spectre Variant 2, branch target injection): YES - * Vulnerable to CVE-2017-5754 (Variant 3, Meltdown, rogue data cache load): NO - * Vulnerable to CVE-2018-3640 (Variant 3a, rogue system register read): YES - * Vulnerable to CVE-2018-3639 (Variant 4, speculative store bypass): YES - * Vulnerable to CVE-2018-3615 (Foreshadow (SGX), L1 terminal fault): NO - * Vulnerable to CVE-2018-3620 (Foreshadow-NG (OS), L1 terminal fault): YES - * Vulnerable to CVE-2018-3646 (Foreshadow-NG (VMM), L1 terminal fault): YES - - CVE-2017-5753 aka 'Spectre Variant 1, bounds check bypass' - * Mitigated according to the /sys interface: YES (Mitigation: __user pointer sanitization) - * Kernel has array_index_mask_nospec: YES (1 occurrence(s) found of x86 64 bits array_index_mask_nospec()) - * Kernel has the Red Hat/Ubuntu patch: NO - * Kernel has mask_nospec64 (arm64): NO - > STATUS: NOT VULNERABLE (Mitigation: __user pointer sanitization) - - CVE-2017-5715 aka 'Spectre Variant 2, branch target injection' - * Mitigated according to the /sys interface: YES (Mitigation: Full generic retpoline, IBPB, IBRS_FW) - * Mitigation 1 - * Kernel is compiled with IBRS support: YES - * IBRS enabled and active: YES (for kernel and firmware code) - * Kernel is compiled with IBPB support: YES - * IBPB enabled and active: YES - * Mitigation 2 - * Kernel has branch predictor hardening (arm): NO - * Kernel compiled with retpoline option: YES - * Kernel compiled with a retpoline-aware compiler: YES (kernel reports full retpoline compilation) - > STATUS: NOT VULNERABLE (Full retpoline + IBPB are mitigating the vulnerability) - - CVE-2017-5754 aka 'Variant 3, Meltdown, rogue data cache load' - * Mitigated according to the /sys interface: YES (Not affected) - * Kernel supports Page Table Isolation (PTI): YES - * PTI enabled and active: NO - * Reduced performance impact of PTI: NO (PCID/INVPCID not supported, performance impact of PTI will be significant) - * Running as a Xen PV DomU: NO - > STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable) - - CVE-2018-3640 aka 'Variant 3a, rogue system register read' - * CPU microcode mitigates the vulnerability: YES - > STATUS: NOT VULNERABLE (your CPU microcode mitigates the vulnerability) - - CVE-2018-3639 aka 'Variant 4, speculative store bypass' - * Mitigated according to the /sys interface: YES (Mitigation: Speculative Store Bypass disabled via prctl and seccomp) - * Kernel supports speculation store bypass: YES (found in /proc/self/status) - > STATUS: NOT VULNERABLE (Mitigation: Speculative Store Bypass disabled via prctl and seccomp) - - CVE-2018-3615 aka 'Foreshadow (SGX), L1 terminal fault' - * CPU microcode mitigates the vulnerability: N/A - > STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable) - - CVE-2018-3620 aka 'Foreshadow-NG (OS), L1 terminal fault' - * Mitigated according to the /sys interface: YES (Not affected) - * Kernel supports PTE inversion: YES (found in kernel image) - * PTE inversion enabled and active: NO - > STATUS: NOT VULNERABLE (Not affected) - - CVE-2018-3646 aka 'Foreshadow-NG (VMM), L1 terminal fault' - * Information from the /sys interface: - * This system is a host running an hypervisor: NO - * Mitigation 1 (KVM) - * EPT is disabled: NO - * Mitigation 2 - * L1D flush is supported by kernel: YES (found flush_l1d in kernel image) - * L1D flush enabled: UNKNOWN (unrecognized mode) - * Hardware-backed L1D flush supported: NO (flush will be done in software, this is slower) - * Hyper-Threading (SMT) is enabled: NO - > STATUS: NOT VULNERABLE (this system is not running an hypervisor) - - > SUMMARY: CVE-2017-5753:OK CVE-2017-5715:OK CVE-2017-5754:OK CVE-2018-3640:OK CVE-2018-3639:OK CVE-2018-3615:OK CVE-2018-3620:OK CVE-2018-3646:OK - - Need more detailed information about mitigation options? Use --explain - A false sense of security is worse than no security at all, see --disclaimer + Spectre and Meltdown mitigation detection tool v0.42 + Checking for vulnerabilities on current system + Kernel is Linux 4.15.0-51-generic #55-Ubuntu SMP Wed May 15 14:27:21 UTC 2019 x86_64 + CPU is Intel(R) Atom(TM) CPU C3858 @ 2.00GHz + + Hardware check + * Hardware support (CPU microcode) for mitigation techniques + * Indirect Branch Restricted Speculation (IBRS) + * SPEC_CTRL MSR is available: YES + * CPU indicates IBRS capability: YES (SPEC_CTRL feature bit) + * Indirect Branch Prediction Barrier (IBPB) + * PRED_CMD MSR is available: YES + * CPU indicates IBPB capability: YES (SPEC_CTRL feature bit) + * Single Thread Indirect Branch Predictors (STIBP) + * SPEC_CTRL MSR is available: YES + * CPU indicates STIBP capability: YES (Intel STIBP feature bit) + * Speculative Store Bypass Disable (SSBD) + * CPU indicates SSBD capability: YES (Intel SSBD) + * L1 data cache invalidation + * FLUSH_CMD MSR is available: NO + * CPU indicates L1D flush capability: NO + * Microarchitecture Data Sampling + * VERW instruction is available: YES (MD_CLEAR feature bit) + * Enhanced IBRS (IBRS_ALL) + * CPU indicates ARCH_CAPABILITIES MSR availability: YES + * ARCH_CAPABILITIES MSR advertises IBRS_ALL capability: NO + * CPU explicitly indicates not being vulnerable to Meltdown/L1TF (RDCL_NO): YES + * CPU explicitly indicates not being vulnerable to Variant 4 (SSB_NO): NO + * CPU/Hypervisor indicates L1D flushing is not necessary on this system: YES + * Hypervisor indicates host CPU might be vulnerable to RSB underflow (RSBA): NO + * CPU explicitly indicates not being vulnerable to Microarchitectural Data Sampling (MDS_NO): YES + * CPU supports Software Guard Extensions (SGX): NO + * CPU microcode is known to cause stability problems: NO (model 0x5f family 0x6 stepping 0x1 ucode 0x2e cpuid 0x506f1) + * CPU microcode is the latest known available version: awk: fatal: cannot open file `bash for reading (No such file or directory) + UNKNOWN (latest microcode version for your CPU model is unknown) + * CPU vulnerability to the speculative execution attack variants + * Vulnerable to CVE-2017-5753 (Spectre Variant 1, bounds check bypass): YES + * Vulnerable to CVE-2017-5715 (Spectre Variant 2, branch target injection): YES + * Vulnerable to CVE-2017-5754 (Variant 3, Meltdown, rogue data cache load): NO + * Vulnerable to CVE-2018-3640 (Variant 3a, rogue system register read): YES + * Vulnerable to CVE-2018-3639 (Variant 4, speculative store bypass): YES + * Vulnerable to CVE-2018-3615 (Foreshadow (SGX), L1 terminal fault): NO + * Vulnerable to CVE-2018-3620 (Foreshadow-NG (OS), L1 terminal fault): NO + * Vulnerable to CVE-2018-3646 (Foreshadow-NG (VMM), L1 terminal fault): NO + * Vulnerable to CVE-2018-12126 (Fallout, microarchitectural store buffer data sampling (MSBDS)): NO + * Vulnerable to CVE-2018-12130 (ZombieLoad, microarchitectural fill buffer data sampling (MFBDS)): NO + * Vulnerable to CVE-2018-12127 (RIDL, microarchitectural load port data sampling (MLPDS)): NO + * Vulnerable to CVE-2019-11091 (RIDL, microarchitectural data sampling uncacheable memory (MDSUM)): NO + + CVE-2017-5753 aka Spectre Variant 1, bounds check bypass + * Mitigated according to the /sys interface: YES (Mitigation: __user pointer sanitization) + * Kernel has array_index_mask_nospec: YES (1 occurrence(s) found of x86 64 bits array_index_mask_nospec()) + * Kernel has the Red Hat/Ubuntu patch: NO + * Kernel has mask_nospec64 (arm64): NO + > STATUS: NOT VULNERABLE (Mitigation: __user pointer sanitization) + + CVE-2017-5715 aka Spectre Variant 2, branch target injection + * Mitigated according to the /sys interface: YES (Mitigation: Full generic retpoline, IBPB: conditional, IBRS_FW, STIBP: disabled, RSB filling) + * Mitigation 1 + * Kernel is compiled with IBRS support: YES + * IBRS enabled and active: YES (for firmware code only) + * Kernel is compiled with IBPB support: YES + * IBPB enabled and active: YES + * Mitigation 2 + * Kernel has branch predictor hardening (arm): NO + * Kernel compiled with retpoline option: YES + * Kernel compiled with a retpoline-aware compiler: YES (kernel reports full retpoline compilation) + > STATUS: NOT VULNERABLE (Full retpoline + IBPB are mitigating the vulnerability) + + CVE-2017-5754 aka Variant 3, Meltdown, rogue data cache load + * Mitigated according to the /sys interface: YES (Not affected) + * Kernel supports Page Table Isolation (PTI): YES + * PTI enabled and active: UNKNOWN (dmesg truncated, please reboot and relaunch this script) + * Reduced performance impact of PTI: NO (PCID/INVPCID not supported, performance impact of PTI will be significant) + * Running as a Xen PV DomU: NO + > STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable) + + CVE-2018-3640 aka Variant 3a, rogue system register read + * CPU microcode mitigates the vulnerability: YES + > STATUS: NOT VULNERABLE (your CPU microcode mitigates the vulnerability) + + CVE-2018-3639 aka Variant 4, speculative store bypass + * Mitigated according to the /sys interface: YES (Mitigation: Speculative Store Bypass disabled via prctl and seccomp) + * Kernel supports disabling speculative store bypass (SSB): YES (found in /proc/self/status) + * SSB mitigation is enabled and active: YES (per-thread through prctl) + * SSB mitigation currently active for selected processes: YES (systemd-journald systemd-logind systemd-networkd systemd-resolved systemd-timesyncd systemd-udevd) + > STATUS: NOT VULNERABLE (Mitigation: Speculative Store Bypass disabled via prctl and seccomp) + + CVE-2018-3615 aka Foreshadow (SGX), L1 terminal fault + * CPU microcode mitigates the vulnerability: N/A + > STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable) + + CVE-2018-3620 aka Foreshadow-NG (OS), L1 terminal fault + * Mitigated according to the /sys interface: YES (Not affected) + * Kernel supports PTE inversion: YES (found in kernel image) + * PTE inversion enabled and active: NO + > STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable) + + CVE-2018-3646 aka Foreshadow-NG (VMM), L1 terminal fault + * Information from the /sys interface: Not affected + * This system is a host running a hypervisor: NO + * Mitigation 1 (KVM) + * EPT is disabled: NO + * Mitigation 2 + * L1D flush is supported by kernel: YES (found flush_l1d in kernel image) + * L1D flush enabled: NO + * Hardware-backed L1D flush supported: NO (flush will be done in software, this is slower) + * Hyper-Threading (SMT) is enabled: NO + > STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable) + + CVE-2018-12126 aka Fallout, microarchitectural store buffer data sampling (MSBDS) + * Mitigated according to the /sys interface: YES (Not affected) + * Kernel supports using MD_CLEAR mitigation: YES (md_clear found in /proc/cpuinfo) + * Kernel mitigation is enabled and active: NO + * SMT is either mitigated or disabled: NO + > STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable) + + CVE-2018-12130 aka ZombieLoad, microarchitectural fill buffer data sampling (MFBDS) + * Mitigated according to the /sys interface: YES (Not affected) + * Kernel supports using MD_CLEAR mitigation: YES (md_clear found in /proc/cpuinfo) + * Kernel mitigation is enabled and active: NO + * SMT is either mitigated or disabled: NO + > STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable) + + CVE-2018-12127 aka RIDL, microarchitectural load port data sampling (MLPDS) + * Mitigated according to the /sys interface: YES (Not affected) + * Kernel supports using MD_CLEAR mitigation: YES (md_clear found in /proc/cpuinfo) + * Kernel mitigation is enabled and active: NO + * SMT is either mitigated or disabled: NO + > STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable) + + CVE-2019-11091 aka RIDL, microarchitectural data sampling uncacheable memory (MDSUM) + * Mitigated according to the /sys interface: YES (Not affected) + * Kernel supports using MD_CLEAR mitigation: YES (md_clear found in /proc/cpuinfo) + * Kernel mitigation is enabled and active: NO + * SMT is either mitigated or disabled: NO + > STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable) + + > SUMMARY: CVE-2017-5753:OK CVE-2017-5715:OK CVE-2017-5754:OK CVE-2018-3640:OK CVE-2018-3639:OK CVE-2018-3615:OK CVE-2018-3620:OK CVE-2018-3646:OK CVE-2018-12126:OK CVE-2018-12130:OK CVE-2018-12127:OK CVE-2019-11091:OK diff --git a/docs/report/introduction/test_environment_sut_meltspec_hsw.rst b/docs/report/introduction/test_environment_sut_meltspec_hsw.rst index 71787f0691..8634aa4cfa 100644 --- a/docs/report/introduction/test_environment_sut_meltspec_hsw.rst +++ b/docs/report/introduction/test_environment_sut_meltspec_hsw.rst @@ -6,121 +6,133 @@ system is vulnerable against the several "speculative execution" CVEs that were made public in 2018. Script is available on `Spectre & Meltdown Checker Github <https://github.com/speed47/spectre-meltdown-checker>`_. -- CVE-2017-5753 [bounds check bypass] aka 'Spectre Variant 1' -- CVE-2017-5715 [branch target injection] aka 'Spectre Variant 2' -- CVE-2017-5754 [rogue data cache load] aka 'Meltdown' aka 'Variant 3' -- CVE-2018-3640 [rogue system register read] aka 'Variant 3a' -- CVE-2018-3639 [speculative store bypass] aka 'Variant 4' -- CVE-2018-3615 [L1 terminal fault] aka 'Foreshadow (SGX)' -- CVE-2018-3620 [L1 terminal fault] aka 'Foreshadow-NG (OS)' -- CVE-2018-3646 [L1 terminal fault] aka 'Foreshadow-NG (VMM)' - :: - $ sudo ./spectre-meltdown-checker.sh --no-color - - Spectre and Meltdown mitigation detection tool v0.40 - - Checking for vulnerabilities on current system - Kernel is Linux 4.15.0-36-generic #39-Ubuntu SMP Mon Sep 24 16:19:09 UTC 2018 x86_64 - CPU is Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz - - Hardware check - * Hardware support (CPU microcode) for mitigation techniques - * Indirect Branch Restricted Speculation (IBRS) - * SPEC_CTRL MSR is available: YES - * CPU indicates IBRS capability: YES (SPEC_CTRL feature bit) - * Indirect Branch Prediction Barrier (IBPB) - * PRED_CMD MSR is available: YES - * CPU indicates IBPB capability: YES (SPEC_CTRL feature bit) - * Single Thread Indirect Branch Predictors (STIBP) - * SPEC_CTRL MSR is available: YES - * CPU indicates STIBP capability: YES (Intel STIBP feature bit) - * Speculative Store Bypass Disable (SSBD) - * CPU indicates SSBD capability: YES (Intel SSBD) - * L1 data cache invalidation - * FLUSH_CMD MSR is available: YES - * CPU indicates L1D flush capability: YES (L1D flush feature bit) - * Enhanced IBRS (IBRS_ALL) - * CPU indicates ARCH_CAPABILITIES MSR availability: NO - * ARCH_CAPABILITIES MSR advertises IBRS_ALL capability: NO - * CPU explicitly indicates not being vulnerable to Meltdown (RDCL_NO): NO - * CPU explicitly indicates not being vulnerable to Variant 4 (SSB_NO): NO - * CPU/Hypervisor indicates L1D flushing is not necessary on this system: NO - * Hypervisor indicates host CPU might be vulnerable to RSB underflow (RSBA): NO - * CPU supports Software Guard Extensions (SGX): NO - * CPU microcode is known to cause stability problems: NO (model 0x3f family 0x6 stepping 0x2 ucode 0x3d cpuid 0x306f2) - * CPU microcode is the latest known available version: YES (latest version is 0x3d dated 2018/04/20 according to builtin MCExtractor DB v84 - 2018/09/27) - * CPU vulnerability to the speculative execution attack variants - * Vulnerable to CVE-2017-5753 (Spectre Variant 1, bounds check bypass): YES - * Vulnerable to CVE-2017-5715 (Spectre Variant 2, branch target injection): YES - * Vulnerable to CVE-2017-5754 (Variant 3, Meltdown, rogue data cache load): YES - * Vulnerable to CVE-2018-3640 (Variant 3a, rogue system register read): YES - * Vulnerable to CVE-2018-3639 (Variant 4, speculative store bypass): YES - * Vulnerable to CVE-2018-3615 (Foreshadow (SGX), L1 terminal fault): NO - * Vulnerable to CVE-2018-3620 (Foreshadow-NG (OS), L1 terminal fault): YES - * Vulnerable to CVE-2018-3646 (Foreshadow-NG (VMM), L1 terminal fault): YES - - CVE-2017-5753 aka 'Spectre Variant 1, bounds check bypass' - * Mitigated according to the /sys interface: YES (Mitigation: __user pointer sanitization) - * Kernel has array_index_mask_nospec: YES (1 occurrence(s) found of x86 64 bits array_index_mask_nospec()) - * Kernel has the Red Hat/Ubuntu patch: NO - * Kernel has mask_nospec64 (arm64): NO - > STATUS: NOT VULNERABLE (Mitigation: __user pointer sanitization) - - CVE-2017-5715 aka 'Spectre Variant 2, branch target injection' - * Mitigated according to the /sys interface: YES (Mitigation: Full generic retpoline, IBPB, IBRS_FW) - * Mitigation 1 - * Kernel is compiled with IBRS support: YES - * IBRS enabled and active: YES (for kernel and firmware code) - * Kernel is compiled with IBPB support: YES - * IBPB enabled and active: YES - * Mitigation 2 - * Kernel has branch predictor hardening (arm): NO - * Kernel compiled with retpoline option: YES - * Kernel compiled with a retpoline-aware compiler: YES (kernel reports full retpoline compilation) - > STATUS: NOT VULNERABLE (Full retpoline + IBPB are mitigating the vulnerability) - - CVE-2017-5754 aka 'Variant 3, Meltdown, rogue data cache load' - * Mitigated according to the /sys interface: YES (Mitigation: PTI) - * Kernel supports Page Table Isolation (PTI): YES - * PTI enabled and active: YES - * Reduced performance impact of PTI: YES (CPU supports INVPCID, performance impact of PTI will be greatly reduced) - * Running as a Xen PV DomU: NO - > STATUS: NOT VULNERABLE (Mitigation: PTI) - - CVE-2018-3640 aka 'Variant 3a, rogue system register read' - * CPU microcode mitigates the vulnerability: YES - > STATUS: NOT VULNERABLE (your CPU microcode mitigates the vulnerability) - - CVE-2018-3639 aka 'Variant 4, speculative store bypass' - * Mitigated according to the /sys interface: YES (Mitigation: Speculative Store Bypass disabled via prctl and seccomp) - * Kernel supports speculation store bypass: YES (found in /proc/self/status) - > STATUS: NOT VULNERABLE (Mitigation: Speculative Store Bypass disabled via prctl and seccomp) - - CVE-2018-3615 aka 'Foreshadow (SGX), L1 terminal fault' - * CPU microcode mitigates the vulnerability: N/A - > STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable) - - CVE-2018-3620 aka 'Foreshadow-NG (OS), L1 terminal fault' - * Mitigated according to the /sys interface: YES (Mitigation: PTE Inversion) - * Kernel supports PTE inversion: YES (found in kernel image) - * PTE inversion enabled and active: YES - > STATUS: NOT VULNERABLE (Mitigation: PTE Inversion) - - CVE-2018-3646 aka 'Foreshadow-NG (VMM), L1 terminal fault' - * Information from the /sys interface: VMX: conditional cache flushes, SMT disabled - * This system is a host running an hypervisor: NO - * Mitigation 1 (KVM) - * EPT is disabled: NO - * Mitigation 2 - * L1D flush is supported by kernel: YES (found flush_l1d in /proc/cpuinfo) - * L1D flush enabled: YES (conditional flushes) - * Hardware-backed L1D flush supported: YES (performance impact of the mitigation will be greatly reduced) - * Hyper-Threading (SMT) is enabled: NO - > STATUS: NOT VULNERABLE (this system is not running an hypervisor) - - > SUMMARY: CVE-2017-5753:OK CVE-2017-5715:OK CVE-2017-5754:OK CVE-2018-3640:OK CVE-2018-3639:OK CVE-2018-3615:OK CVE-2018-3620:OK CVE-2018-3646:OK - - Need more detailed information about mitigation options? Use --explain - A false sense of security is worse than no security at all, see --disclaimer + Spectre and Meltdown mitigation detection tool v0.42 + + Checking for vulnerabilities on current system + Kernel is Linux 4.15.0-36-generic #39-Ubuntu SMP Mon Sep 24 16:19:09 UTC 2018 x86_64 + CPU is Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz + + Hardware check + * Hardware support (CPU microcode) for mitigation techniques + * Indirect Branch Restricted Speculation (IBRS) + * SPEC_CTRL MSR is available: YES + * CPU indicates IBRS capability: YES (SPEC_CTRL feature bit) + * Indirect Branch Prediction Barrier (IBPB) + * PRED_CMD MSR is available: YES + * CPU indicates IBPB capability: YES (SPEC_CTRL feature bit) + * Single Thread Indirect Branch Predictors (STIBP) + * SPEC_CTRL MSR is available: YES + * CPU indicates STIBP capability: YES (Intel STIBP feature bit) + * Speculative Store Bypass Disable (SSBD) + * CPU indicates SSBD capability: YES (Intel SSBD) + * L1 data cache invalidation + * FLUSH_CMD MSR is available: YES + * CPU indicates L1D flush capability: YES (L1D flush feature bit) + * Microarchitecture Data Sampling + * VERW instruction is available: NO + * Enhanced IBRS (IBRS_ALL) + * CPU indicates ARCH_CAPABILITIES MSR availability: NO + * ARCH_CAPABILITIES MSR advertises IBRS_ALL capability: NO + * CPU explicitly indicates not being vulnerable to Meltdown/L1TF (RDCL_NO): NO + * CPU explicitly indicates not being vulnerable to Variant 4 (SSB_NO): NO + * CPU/Hypervisor indicates L1D flushing is not necessary on this system: NO + * Hypervisor indicates host CPU might be vulnerable to RSB underflow (RSBA): NO + * CPU explicitly indicates not being vulnerable to Microarchitectural Data Sampling (MDS_NO): NO + * CPU supports Software Guard Extensions (SGX): NO + * CPU microcode is known to cause stability problems: NO (model 0x3f family 0x6 stepping 0x2 ucode 0x3d cpuid 0x306f2) + * CPU microcode is the latest known available version: awk: cannot open bash (No such file or directory) + UNKNOWN (latest microcode version for your CPU model is unknown) + * CPU vulnerability to the speculative execution attack variants + * Vulnerable to CVE-2017-5753 (Spectre Variant 1, bounds check bypass): YES + * Vulnerable to CVE-2017-5715 (Spectre Variant 2, branch target injection): YES + * Vulnerable to CVE-2017-5754 (Variant 3, Meltdown, rogue data cache load): YES + * Vulnerable to CVE-2018-3640 (Variant 3a, rogue system register read): YES + * Vulnerable to CVE-2018-3639 (Variant 4, speculative store bypass): YES + * Vulnerable to CVE-2018-3615 (Foreshadow (SGX), L1 terminal fault): NO + * Vulnerable to CVE-2018-3620 (Foreshadow-NG (OS), L1 terminal fault): YES + * Vulnerable to CVE-2018-3646 (Foreshadow-NG (VMM), L1 terminal fault): YES + * Vulnerable to CVE-2018-12126 (Fallout, microarchitectural store buffer data sampling (MSBDS)): YES + * Vulnerable to CVE-2018-12130 (ZombieLoad, microarchitectural fill buffer data sampling (MFBDS)): YES + * Vulnerable to CVE-2018-12127 (RIDL, microarchitectural load port data sampling (MLPDS)): YES + * Vulnerable to CVE-2019-11091 (RIDL, microarchitectural data sampling uncacheable memory (MDSUM)): YES + + CVE-2017-5753 aka Spectre Variant 1, bounds check bypass + * Mitigated according to the /sys interface: YES (Mitigation: __user pointer sanitization) + * Kernel has array_index_mask_nospec: YES (1 occurrence(s) found of x86 64 bits array_index_mask_nospec()) + * Kernel has the Red Hat/Ubuntu patch: NO + * Kernel has mask_nospec64 (arm64): NO + > STATUS: NOT VULNERABLE (Mitigation: __user pointer sanitization) + + CVE-2017-5715 aka Spectre Variant 2, branch target injection + * Mitigated according to the /sys interface: YES (Mitigation: Full generic retpoline, IBPB, IBRS_FW) + * Mitigation 1 + * Kernel is compiled with IBRS support: YES + * IBRS enabled and active: YES (for firmware code only) + * Kernel is compiled with IBPB support: YES + * IBPB enabled and active: YES + * Mitigation 2 + * Kernel has branch predictor hardening (arm): NO + * Kernel compiled with retpoline option: YES + * Kernel compiled with a retpoline-aware compiler: YES (kernel reports full retpoline compilation) + > STATUS: NOT VULNERABLE (Full retpoline + IBPB are mitigating the vulnerability) + + CVE-2017-5754 aka Variant 3, Meltdown, rogue data cache load + * Mitigated according to the /sys interface: YES (Mitigation: PTI) + * Kernel supports Page Table Isolation (PTI): YES + * PTI enabled and active: YES + * Reduced performance impact of PTI: YES (CPU supports INVPCID, performance impact of PTI will be greatly reduced) + * Running as a Xen PV DomU: NO + > STATUS: NOT VULNERABLE (Mitigation: PTI) + + CVE-2018-3640 aka Variant 3a, rogue system register read + * CPU microcode mitigates the vulnerability: YES + > STATUS: NOT VULNERABLE (your CPU microcode mitigates the vulnerability) + + CVE-2018-3639 aka Variant 4, speculative store bypass + * Mitigated according to the /sys interface: YES (Mitigation: Speculative Store Bypass disabled via prctl and seccomp) + * Kernel supports disabling speculative store bypass (SSB): YES (found in /proc/self/status) + * SSB mitigation is enabled and active: YES (per-thread through prctl) + * SSB mitigation currently active for selected processes: YES (systemd-journald systemd-logind systemd-networkd systemd-resolved systemd-timesyncd systemd-udevd) + > STATUS: NOT VULNERABLE (Mitigation: Speculative Store Bypass disabled via prctl and seccomp) + + CVE-2018-3615 aka Foreshadow (SGX), L1 terminal fault + * CPU microcode mitigates the vulnerability: N/A + > STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable) + + CVE-2018-3620 aka Foreshadow-NG (OS), L1 terminal fault + * Mitigated according to the /sys interface: YES (Mitigation: PTE Inversion; VMX: conditional cache flushes, SMT disabled) + * Kernel supports PTE inversion: YES (found in kernel image) + * PTE inversion enabled and active: YES + > STATUS: NOT VULNERABLE (Mitigation: PTE Inversion; VMX: conditional cache flushes, SMT disabled) + + CVE-2018-3646 aka Foreshadow-NG (VMM), L1 terminal fault + * Information from the /sys interface: Mitigation: PTE Inversion; VMX: conditional cache flushes, SMT disabled + * This system is a host running a hypervisor: NO + * Mitigation 1 (KVM) + * EPT is disabled: NO + * Mitigation 2 + * L1D flush is supported by kernel: YES (found flush_l1d in /proc/cpuinfo) + * L1D flush enabled: YES (conditional flushes) + * Hardware-backed L1D flush supported: YES (performance impact of the mitigation will be greatly reduced) + * Hyper-Threading (SMT) is enabled: NO + > STATUS: NOT VULNERABLE (this system is not running a hypervisor) + + CVE-2018-12126 aka Fallout, microarchitectural store buffer data sampling (MSBDS) + * Kernel supports using MD_CLEAR mitigation: NO + > STATUS: VULNERABLE (Neither your kernel or your microcode support mitigation, upgrade both to mitigate the vulnerability) + + CVE-2018-12130 aka ZombieLoad, microarchitectural fill buffer data sampling (MFBDS) + * Kernel supports using MD_CLEAR mitigation: NO + > STATUS: VULNERABLE (Neither your kernel or your microcode support mitigation, upgrade both to mitigate the vulnerability) + + CVE-2018-12127 aka RIDL, microarchitectural load port data sampling (MLPDS) + * Kernel supports using MD_CLEAR mitigation: NO + > STATUS: VULNERABLE (Neither your kernel or your microcode support mitigation, upgrade both to mitigate the vulnerability) + + CVE-2019-11091 aka RIDL, microarchitectural data sampling uncacheable memory (MDSUM) + * Kernel supports using MD_CLEAR mitigation: NO + > STATUS: VULNERABLE (Neither your kernel or your microcode support mitigation, upgrade both to mitigate the vulnerability) + + > SUMMARY: CVE-2017-5753:OK CVE-2017-5715:OK CVE-2017-5754:OK CVE-2018-3640:OK CVE-2018-3639:OK CVE-2018-3615:OK CVE-2018-3620:OK CVE-2018-3646:OK CVE-2018-12126:KO CVE-2018-12130:KO CVE-2018-12127:KO CVE-2019-11091:KO diff --git a/docs/report/introduction/test_environment_sut_meltspec_skx.rst b/docs/report/introduction/test_environment_sut_meltspec_skx.rst index 443a7fd484..15b098a9ce 100644 --- a/docs/report/introduction/test_environment_sut_meltspec_skx.rst +++ b/docs/report/introduction/test_environment_sut_meltspec_skx.rst @@ -6,120 +6,134 @@ system is vulnerable against the several "speculative execution" CVEs that were made public in 2018. Script is available on `Spectre & Meltdown Checker Github <https://github.com/speed47/spectre-meltdown-checker>`_. -- CVE-2017-5753 [bounds check bypass] aka 'Spectre Variant 1' -- CVE-2017-5715 [branch target injection] aka 'Spectre Variant 2' -- CVE-2017-5754 [rogue data cache load] aka 'Meltdown' aka 'Variant 3' -- CVE-2018-3640 [rogue system register read] aka 'Variant 3a' -- CVE-2018-3639 [speculative store bypass] aka 'Variant 4' -- CVE-2018-3615 [L1 terminal fault] aka 'Foreshadow (SGX)' -- CVE-2018-3620 [L1 terminal fault] aka 'Foreshadow-NG (OS)' -- CVE-2018-3646 [L1 terminal fault] aka 'Foreshadow-NG (VMM)' - :: - $ sudo ./spectre-meltdown-checker.sh --no-color - - Spectre and Meltdown mitigation detection tool v0.40 - - Checking for vulnerabilities on current system - Kernel is Linux 4.15.0-23-generic #25-Ubuntu SMP Wed May 23 18:02:16 UTC 2018 x86_64 - CPU is Intel(R) Xeon(R) Platinum 8180 CPU @ 2.50GHz - - Hardware check - * Hardware support (CPU microcode) for mitigation techniques - * Indirect Branch Restricted Speculation (IBRS) - * SPEC_CTRL MSR is available: YES - * CPU indicates IBRS capability: YES (SPEC_CTRL feature bit) - * Indirect Branch Prediction Barrier (IBPB) - * PRED_CMD MSR is available: YES - * CPU indicates IBPB capability: YES (SPEC_CTRL feature bit) - * Single Thread Indirect Branch Predictors (STIBP) - * SPEC_CTRL MSR is available: YES - * CPU indicates STIBP capability: YES (Intel STIBP feature bit) - * Speculative Store Bypass Disable (SSBD) - * CPU indicates SSBD capability: NO - * L1 data cache invalidation - * FLUSH_CMD MSR is available: NO - * CPU indicates L1D flush capability: NO - * Enhanced IBRS (IBRS_ALL) - * CPU indicates ARCH_CAPABILITIES MSR availability: NO - * ARCH_CAPABILITIES MSR advertises IBRS_ALL capability: NO - * CPU explicitly indicates not being vulnerable to Meltdown (RDCL_NO): NO - * CPU explicitly indicates not being vulnerable to Variant 4 (SSB_NO): NO - * CPU/Hypervisor indicates L1D flushing is not necessary on this system: NO - * Hypervisor indicates host CPU might be vulnerable to RSB underflow (RSBA): NO - * CPU supports Software Guard Extensions (SGX): NO - * CPU microcode is known to cause stability problems: NO (model 0x55 family 0x6 stepping 0x4 ucode 0x2000043 cpuid 0x50654) - * CPU microcode is the latest known available version: NO (latest version is 0x200004d dated 2018/05/15 according to builtin MCExtractor DB v84 - 2018/09/27) - * CPU vulnerability to the speculative execution attack variants - * Vulnerable to CVE-2017-5753 (Spectre Variant 1, bounds check bypass): YES - * Vulnerable to CVE-2017-5715 (Spectre Variant 2, branch target injection): YES - * Vulnerable to CVE-2017-5754 (Variant 3, Meltdown, rogue data cache load): YES - * Vulnerable to CVE-2018-3640 (Variant 3a, rogue system register read): YES - * Vulnerable to CVE-2018-3639 (Variant 4, speculative store bypass): YES - * Vulnerable to CVE-2018-3615 (Foreshadow (SGX), L1 terminal fault): NO - * Vulnerable to CVE-2018-3620 (Foreshadow-NG (OS), L1 terminal fault): YES - * Vulnerable to CVE-2018-3646 (Foreshadow-NG (VMM), L1 terminal fault): YES - - CVE-2017-5753 aka 'Spectre Variant 1, bounds check bypass' - * Mitigated according to the /sys interface: YES (Mitigation: __user pointer sanitization) - * Kernel has array_index_mask_nospec: YES (1 occurrence(s) found of x86 64 bits array_index_mask_nospec()) - * Kernel has the Red Hat/Ubuntu patch: NO - * Kernel has mask_nospec64 (arm64): NO - > STATUS: NOT VULNERABLE (Mitigation: __user pointer sanitization) - - CVE-2017-5715 aka 'Spectre Variant 2, branch target injection' - * Mitigated according to the /sys interface: YES (Mitigation: Full generic retpoline, IBPB, IBRS_FW) - * Mitigation 1 - * Kernel is compiled with IBRS support: YES - * IBRS enabled and active: YES (for kernel and firmware code) - * Kernel is compiled with IBPB support: YES - * IBPB enabled and active: YES - * Mitigation 2 - * Kernel has branch predictor hardening (arm): NO - * Kernel compiled with retpoline option: YES - * Kernel compiled with a retpoline-aware compiler: YES (kernel reports full retpoline compilation) - * Kernel supports RSB filling: YES - > STATUS: NOT VULNERABLE (Full retpoline + IBPB are mitigating the vulnerability) - - CVE-2017-5754 aka 'Variant 3, Meltdown, rogue data cache load' - * Mitigated according to the /sys interface: YES (Mitigation: PTI) - * Kernel supports Page Table Isolation (PTI): YES - * PTI enabled and active: YES - * Reduced performance impact of PTI: YES (CPU supports INVPCID, performance impact of PTI will be greatly reduced) - * Running as a Xen PV DomU: NO - > STATUS: NOT VULNERABLE (Mitigation: PTI) - - CVE-2018-3640 aka 'Variant 3a, rogue system register read' - * CPU microcode mitigates the vulnerability: NO - > STATUS: VULNERABLE (an up-to-date CPU microcode is needed to mitigate this vulnerability) - - CVE-2018-3639 aka 'Variant 4, speculative store bypass' - * Mitigated according to the /sys interface: NO (Vulnerable) - * Kernel supports speculation store bypass: YES (found in /proc/self/status) - > STATUS: VULNERABLE (Your CPU doesn't support SSBD) - - CVE-2018-3615 aka 'Foreshadow (SGX), L1 terminal fault' - * CPU microcode mitigates the vulnerability: N/A - > STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable) - - CVE-2018-3620 aka 'Foreshadow-NG (OS), L1 terminal fault' - * Kernel supports PTE inversion: NO - * PTE inversion enabled and active: UNKNOWN (sysfs interface not available) - > STATUS: VULNERABLE (Your kernel doesn't support PTE inversion, update it) - - CVE-2018-3646 aka 'Foreshadow-NG (VMM), L1 terminal fault' - * This system is a host running an hypervisor: NO - * Mitigation 1 (KVM) - * EPT is disabled: NO - * Mitigation 2 - * L1D flush is supported by kernel: NO - * L1D flush enabled: UNKNOWN (can't find or read /sys/devices/system/cpu/vulnerabilities/l1tf) - * Hardware-backed L1D flush supported: NO (flush will be done in software, this is slower) - * Hyper-Threading (SMT) is enabled: YES - > STATUS: NOT VULNERABLE (this system is not running an hypervisor) - - > SUMMARY: CVE-2017-5753:OK CVE-2017-5715:OK CVE-2017-5754:OK CVE-2018-3640:KO CVE-2018-3639:KO CVE-2018-3615:OK CVE-2018-3620:KO CVE-2018-3646:OK - - Need more detailed information about mitigation options? Use --explain - A false sense of security is worse than no security at all, see --disclaimer + Spectre and Meltdown mitigation detection tool v0.42 + + Checking for vulnerabilities on current system + Kernel is Linux 4.15.0-46-generic #49-Ubuntu SMP Wed Feb 6 09:33:07 UTC 2019 x86_64 + CPU is Intel(R) Xeon(R) Platinum 8180 CPU @ 2.50GHz + + Hardware check + * Hardware support (CPU microcode) for mitigation techniques + * Indirect Branch Restricted Speculation (IBRS) + * SPEC_CTRL MSR is available: YES + * CPU indicates IBRS capability: YES (SPEC_CTRL feature bit) + * Indirect Branch Prediction Barrier (IBPB) + * PRED_CMD MSR is available: YES + * CPU indicates IBPB capability: YES (SPEC_CTRL feature bit) + * Single Thread Indirect Branch Predictors (STIBP) + * SPEC_CTRL MSR is available: YES + * CPU indicates STIBP capability: YES (Intel STIBP feature bit) + * Speculative Store Bypass Disable (SSBD) + * CPU indicates SSBD capability: YES (Intel SSBD) + * L1 data cache invalidation + * FLUSH_CMD MSR is available: YES + * CPU indicates L1D flush capability: YES (L1D flush feature bit) + * Microarchitecture Data Sampling + * VERW instruction is available: NO + * Enhanced IBRS (IBRS_ALL) + * CPU indicates ARCH_CAPABILITIES MSR availability: NO + * ARCH_CAPABILITIES MSR advertises IBRS_ALL capability: NO + * CPU explicitly indicates not being vulnerable to Meltdown/L1TF (RDCL_NO): NO + * CPU explicitly indicates not being vulnerable to Variant 4 (SSB_NO): NO + * CPU/Hypervisor indicates L1D flushing is not necessary on this system: NO + * Hypervisor indicates host CPU might be vulnerable to RSB underflow (RSBA): NO + * CPU explicitly indicates not being vulnerable to Microarchitectural Data Sampling (MDS_NO): NO + * CPU supports Software Guard Extensions (SGX): NO + * CPU microcode is known to cause stability problems: NO (model 0x55 family 0x6 stepping 0x4 ucode 0x200004d cpuid 0x50654) + * CPU microcode is the latest known available version: awk: cannot open bash (No such file or directory) + UNKNOWN (latest microcode version for your CPU model is unknown) + * CPU vulnerability to the speculative execution attack variants + * Vulnerable to CVE-2017-5753 (Spectre Variant 1, bounds check bypass): YES + * Vulnerable to CVE-2017-5715 (Spectre Variant 2, branch target injection): YES + * Vulnerable to CVE-2017-5754 (Variant 3, Meltdown, rogue data cache load): YES + * Vulnerable to CVE-2018-3640 (Variant 3a, rogue system register read): YES + * Vulnerable to CVE-2018-3639 (Variant 4, speculative store bypass): YES + * Vulnerable to CVE-2018-3615 (Foreshadow (SGX), L1 terminal fault): NO + * Vulnerable to CVE-2018-3620 (Foreshadow-NG (OS), L1 terminal fault): YES + * Vulnerable to CVE-2018-3646 (Foreshadow-NG (VMM), L1 terminal fault): YES + * Vulnerable to CVE-2018-12126 (Fallout, microarchitectural store buffer data sampling (MSBDS)): YES + * Vulnerable to CVE-2018-12130 (ZombieLoad, microarchitectural fill buffer data sampling (MFBDS)): YES + * Vulnerable to CVE-2018-12127 (RIDL, microarchitectural load port data sampling (MLPDS)): YES + * Vulnerable to CVE-2019-11091 (RIDL, microarchitectural data sampling uncacheable memory (MDSUM)): YES + + CVE-2017-5753 aka Spectre Variant 1, bounds check bypass + * Mitigated according to the /sys interface: YES (Mitigation: __user pointer sanitization) + * Kernel has array_index_mask_nospec: YES (1 occurrence(s) found of x86 64 bits array_index_mask_nospec()) + * Kernel has the Red Hat/Ubuntu patch: NO + * Kernel has mask_nospec64 (arm64): NO + > STATUS: NOT VULNERABLE (Mitigation: __user pointer sanitization) + + CVE-2017-5715 aka Spectre Variant 2, branch target injection + * Mitigated according to the /sys interface: YES (Mitigation: Full generic retpoline, IBPB, IBRS_FW) + * Mitigation 1 + * Kernel is compiled with IBRS support: YES + * IBRS enabled and active: YES (for firmware code only) + * Kernel is compiled with IBPB support: YES + * IBPB enabled and active: YES + * Mitigation 2 + * Kernel has branch predictor hardening (arm): NO + * Kernel compiled with retpoline option: YES + * Kernel compiled with a retpoline-aware compiler: YES (kernel reports full retpoline compilation) + * Kernel supports RSB filling: YES + > STATUS: NOT VULNERABLE (Full retpoline + IBPB are mitigating the vulnerability) + + CVE-2017-5754 aka Variant 3, Meltdown, rogue data cache load + * Mitigated according to the /sys interface: YES (Mitigation: PTI) + * Kernel supports Page Table Isolation (PTI): YES + * PTI enabled and active: YES + * Reduced performance impact of PTI: YES (CPU supports INVPCID, performance impact of PTI will be greatly reduced) + * Running as a Xen PV DomU: NO + > STATUS: NOT VULNERABLE (Mitigation: PTI) + + CVE-2018-3640 aka Variant 3a, rogue system register read + * CPU microcode mitigates the vulnerability: YES + > STATUS: NOT VULNERABLE (your CPU microcode mitigates the vulnerability) + + CVE-2018-3639 aka Variant 4, speculative store bypass + * Mitigated according to the /sys interface: YES (Mitigation: Speculative Store Bypass disabled via prctl and seccomp) + * Kernel supports disabling speculative store bypass (SSB): YES (found in /proc/self/status) + * SSB mitigation is enabled and active: YES (per-thread through prctl) + * SSB mitigation currently active for selected processes: YES (systemd-journald systemd-logind systemd-networkd systemd-resolved systemd-timesyncd systemd-udevd) + > STATUS: NOT VULNERABLE (Mitigation: Speculative Store Bypass disabled via prctl and seccomp) + + CVE-2018-3615 aka Foreshadow (SGX), L1 terminal fault + * CPU microcode mitigates the vulnerability: N/A + > STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable) + + CVE-2018-3620 aka Foreshadow-NG (OS), L1 terminal fault + * Mitigated according to the /sys interface: YES (Mitigation: PTE Inversion; VMX: conditional cache flushes, SMT vulnerable) + * Kernel supports PTE inversion: YES (found in kernel image) + * PTE inversion enabled and active: YES + > STATUS: NOT VULNERABLE (Mitigation: PTE Inversion; VMX: conditional cache flushes, SMT vulnerable) + + CVE-2018-3646 aka Foreshadow-NG (VMM), L1 terminal fault + * Information from the /sys interface: Mitigation: PTE Inversion; VMX: conditional cache flushes, SMT vulnerable + * This system is a host running a hypervisor: NO + * Mitigation 1 (KVM) + * EPT is disabled: NO + * Mitigation 2 + * L1D flush is supported by kernel: YES (found flush_l1d in /proc/cpuinfo) + * L1D flush enabled: YES (conditional flushes) + * Hardware-backed L1D flush supported: YES (performance impact of the mitigation will be greatly reduced) + * Hyper-Threading (SMT) is enabled: YES + > STATUS: NOT VULNERABLE (this system is not running a hypervisor) + + CVE-2018-12126 aka Fallout, microarchitectural store buffer data sampling (MSBDS) + * Kernel supports using MD_CLEAR mitigation: NO + > STATUS: VULNERABLE (Neither your kernel or your microcode support mitigation, upgrade both to mitigate the vulnerability) + + CVE-2018-12130 aka ZombieLoad, microarchitectural fill buffer data sampling (MFBDS) + * Kernel supports using MD_CLEAR mitigation: NO + > STATUS: VULNERABLE (Neither your kernel or your microcode support mitigation, upgrade both to mitigate the vulnerability) + + CVE-2018-12127 aka RIDL, microarchitectural load port data sampling (MLPDS) + * Kernel supports using MD_CLEAR mitigation: NO + > STATUS: VULNERABLE (Neither your kernel or your microcode support mitigation, upgrade both to mitigate the vulnerability) + + CVE-2019-11091 aka RIDL, microarchitectural data sampling uncacheable memory (MDSUM) + * Kernel supports using MD_CLEAR mitigation: NO + > STATUS: VULNERABLE (Neither your kernel or your microcode support mitigation, upgrade both to mitigate the vulnerability) + + > SUMMARY: CVE-2017-5753:OK CVE-2017-5715:OK CVE-2017-5754:OK CVE-2018-3640:OK CVE-2018-3639:OK CVE-2018-3615:OK CVE-2018-3620:OK CVE-2018-3646:OK CVE-2018-12126:KO CVE-2018-12130:KO CVE-2018-12127:KO CVE-2019-11091:KO diff --git a/docs/report/introduction/test_environment_tg.rst b/docs/report/introduction/test_environment_tg.rst index 135c9d478d..60dc81270b 100644 --- a/docs/report/introduction/test_environment_tg.rst +++ b/docs/report/introduction/test_environment_tg.rst @@ -9,7 +9,7 @@ TG Version DPDK Version ~~~~~~~~~~~~ -DPDK v18.08 +DPDK v19.02 TG Build Script Used ~~~~~~~~~~~~~~~~~~~~ diff --git a/docs/report/introduction/test_scenarios_overview.rst b/docs/report/introduction/test_scenarios_overview.rst index ee334a6407..8d66836e9d 100644 --- a/docs/report/introduction/test_scenarios_overview.rst +++ b/docs/report/introduction/test_scenarios_overview.rst @@ -12,18 +12,17 @@ Brief overview of test scenarios covered in this report: #. **VPP Performance**: VPP performance tests are executed in physical FD.io testbeds, focusing on VPP network data plane performance in NIC-to-NIC switching topologies. Tested across Intel Xeon Haswell - and Skylake servers, range of NICs (10GE, 25GE, 40GE) and multi- - thread/multi-core configurations. VPP application runs in bare-metal + and Skylake servers, ARM, Denverton, range of NICs (10GE, 25GE, 40GE) and + multi-thread/multi-core configurations. VPP application runs in bare-metal host user-mode handling NICs. TRex is used as a traffic generator. #. **VPP Vhostuser Performance with KVM VMs**: VPP VM service switching performance tests using vhostuser virtual interface for - interconnecting multiple Testpmd-in-VM instances. VPP vswitch + interconnecting multiple NF-in-VM instances. VPP vswitch instance runs in bare-metal user-mode handling NICs and connecting - over vhost-user interfaces to VM instances each running DPDK - Testpmd with virtio virtual interfaces. Similarly to VPP - Performance, tests are run across a range of configurations. TRex - is used as a traffic generator. + over vhost-user interfaces to VM instances each running VPP with virtio + virtual interfaces. Similarly to VPP Performance, tests are run across a + range of configurations. TRex is used as a traffic generator. #. **VPP Memif Performance with LXC and Docker Containers**: VPP Container service switching performance tests using memif virtual @@ -49,12 +48,11 @@ Brief overview of test scenarios covered in this report: cover vNIC-to-vNIC vNIC-to-nestedVM-to-vNIC forwarding topologies. Scapy is used as a traffic generator. -#. **Honeycomb Functional**: Honeycomb functional tests are executed in - virtual FD.io testbeds, focusing on Honeycomb management and - programming functionality of VPP. Tests cover a range of CRUD - operations executed against VPP. - .. + #. **Honeycomb Functional**: Honeycomb functional tests are executed in + virtual FD.io testbeds, focusing on Honeycomb management and + programming functionality of VPP. Tests cover a range of CRUD + operations executed against VPP. #. **DMM Functional**: DMM functional tests are executed in virtual FD.io testbeds demonstrating a single server (DUT1) and single client (DUT2) scenario using DMM framework and Linux kernel TCP/IP |