diff options
author | Peter Mikus <pmikus@cisco.com> | 2019-08-09 07:48:43 +0000 |
---|---|---|
committer | Tibor Frank <tifrank@cisco.com> | 2019-08-09 08:29:19 +0000 |
commit | ce1c52b1fd27d3e2b6c4909219fa98418565ba61 (patch) | |
tree | 80d95c9987fbf21e0d41507b4740034562912812 /docs/report/vpp_device_tests | |
parent | d6c832b02ac7d3073dd8651b089a72ec8240b183 (diff) |
DOC: rls1908 static content
Signed-off-by: Peter Mikus <pmikus@cisco.com>
Change-Id: Ia0778acc543a51fe85b8a75162f12905badaa382
Diffstat (limited to 'docs/report/vpp_device_tests')
-rw-r--r-- | docs/report/vpp_device_tests/csit_release_notes.rst | 8 | ||||
-rw-r--r-- | docs/report/vpp_device_tests/overview.rst | 21 | ||||
-rw-r--r-- | docs/report/vpp_device_tests/test_environment.rst | 573 |
3 files changed, 600 insertions, 2 deletions
diff --git a/docs/report/vpp_device_tests/csit_release_notes.rst b/docs/report/vpp_device_tests/csit_release_notes.rst index 6f07713413..58ac234f6f 100644 --- a/docs/report/vpp_device_tests/csit_release_notes.rst +++ b/docs/report/vpp_device_tests/csit_release_notes.rst @@ -7,6 +7,14 @@ Changes in |csit-release| #. TEST FRAMEWORK - **Bug fixes**. + - **ARM platform compatibility**. + +#. TEST COVERAGE + + - Increased test coverage: **Dot1q**, **IPsec**, **802.1ad VXLAN**, + **COP whitelist**, **COP blacklist**, **QoS Policer Metering**, + **iACL whitelist**, **AVF driver**, **TAP Interface**. + - Align vpp_device L2 Robot Keywords with performance L2 Robot Keywords. Known Issues ------------ diff --git a/docs/report/vpp_device_tests/overview.rst b/docs/report/vpp_device_tests/overview.rst index a53e3f4971..4a53d619a2 100644 --- a/docs/report/vpp_device_tests/overview.rst +++ b/docs/report/vpp_device_tests/overview.rst @@ -111,6 +111,15 @@ environment: +-----------------------+----------------------------------------------+ | Functionality | Description | +=======================+==============================================+ +| ACL | Ingress Access Control List security for L2 | +| | Bridge-Domain MAC switching, IPv4 routing, | +| | IPv6 routing. | ++-----------------------+----------------------------------------------+ +| COP | COP address white-list and black-list | +| | filtering for IPv4 and IPv6 routing. | ++-----------------------+----------------------------------------------+ +| IPSec | IPSec tunnel and transport modes. | ++-----------------------+----------------------------------------------+ | IPv4 | IPv4 routing, ICMPv4. | +-----------------------+----------------------------------------------+ | IPv6 | IPv4 routing, ICMPv6. | @@ -121,9 +130,19 @@ environment: | L2XC | L2 Cross-Connect switching for untagged | | | Ethernet. | +-----------------------+----------------------------------------------+ +| Memif Interface | Baseline VPP memif interface tests. | ++-----------------------+----------------------------------------------+ +| QoS Policer Metering | Ingress packet rate metering and marking for | +| | IPv4, IPv6. | ++-----------------------+----------------------------------------------+ +| Tap Interface | Baseline Linux tap interface tests. | ++-----------------------+----------------------------------------------+ +| VLAN Tag | L2 VLAN subinterfaces. | ++-----------------------+----------------------------------------------+ | Vhost-user Interface | Baseline VPP vhost-user interface tests. | +-----------------------+----------------------------------------------+ -| Memif Interface | Baseline VPP memif interface tests. | +| VXLAN | VXLAN overlay tunneling for L2-over-IPv4 and | +| | -over-IPv6. | +-----------------------+----------------------------------------------+ Tests Naming diff --git a/docs/report/vpp_device_tests/test_environment.rst b/docs/report/vpp_device_tests/test_environment.rst index 97c296086b..f56f1b913f 100644 --- a/docs/report/vpp_device_tests/test_environment.rst +++ b/docs/report/vpp_device_tests/test_environment.rst @@ -1,2 +1,573 @@ +Integration Tests +================= -.. include:: ../../../../../../docs/vpp-device.rst +Abstract +-------- + +FD.io VPP software data plane technology has become very popular across +a wide range of VPP eco-system use cases, putting higher pressure on +continuous verification of VPP software quality. + +This document describes a proposal for design and implementation of extended +continuous VPP testing by extending existing test environments. +Furthermore it describes and summarizes implementation details of Integration +and System tests platform *1-Node VPP_Device*. It aims to provide a complete +end-to-end view of *1-Node VPP_Device* environment in order to improve +extendability and maintenance, under the guideline of VPP core team. + +The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", +"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be +interpreted as described in :rfc:`8174`. + +Overview +-------- + +.. only:: latex + + .. raw:: latex + + \begin{figure}[H] + \centering + \graphicspath{{../_tmp/src/vpp_device_tests/}} + \includegraphics[width=0.90\textwidth]{vpp_device} + \label{fig:vpp_device} + \end{figure} + +.. only:: html + + .. figure:: vpp_device.svg + :alt: vpp_device + :align: center + +Physical Testbeds +----------------- + +All :abbr:`FD.io (Fast Data Input/Ouput)` :abbr:`CSIT (Continuous System +Integration and Testing)` vpp-device tests are executed on physical testbeds +built with bare-metal servers hosted by :abbr:`LF (Linux Foundation)` FD.io +project. Two 1-node testbed topologies are used: + +- **2-Container Topology**: Consisting of one Docker container acting as SUT + (System Under Test) and one Docker container as TG (Traffic Generator), both + connected in ring topology via physical NIC cross-connecting. + +Current FD.io production testbeds are built with servers based on one +processor generation of Intel Xeons: Skylake (Platinum 8180). Testbeds built +with servers based on Arm processors are in the process of being added to FD.io +production. + +Following section describe existing production 1n-skx testbed. + +1-Node Xeon Skylake (1n-skx) +~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +1n-skx testbed is based on single SuperMicro SYS-7049GP-TRT server equipped with +two Intel Xeon Skylake Platinum 8180 2.5 GHz 28 core processors. Physical +testbed topology is depicted in a figure below. + +.. only:: latex + + .. raw:: latex + + \begin{figure}[H] + \centering + \graphicspath{{../_tmp/src/vpp_device_tests/}} + \includegraphics[width=0.90\textwidth]{vf-2n-nic2nic} + \label{fig:vf-2n-nic2nic} + \end{figure} + +.. only:: html + + .. figure:: vf-2n-nic2nic.svg + :alt: vf-2n-nic2nic + :align: center + +Server is populated with the following NIC models: + +#. NIC-1: x710-da4 4p10GE Intel. +#. NIC-2: x710-da4 4p10GE Intel. + +All Intel Xeon Skylake servers run with Intel Hyper-Threading enabled, +doubling the number of logical cores exposed to Linux, with 56 logical +cores and 28 physical cores per processor socket. + +NIC interfaces are shared using Linux vfio_pci and VPP VF drivers: + +- DPDK VF driver, +- Fortville AVF driver. + +Provided Intel x710-da4 4p10GE NICs support 32 VFs per interface, 128 per NIC. + +Complete 1n-skx testbeds specification is available on `CSIT LF Testbeds +<https://wiki.fd.io/view/CSIT/Testbeds:_Xeon_Skx,_Arm,_Atom.>`_ wiki page. + +Total of two 1n-skx testbeds are in operation in FD.io labs. + +1-Node Virtualbox (1n-vbox) +~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +1n-skx testbed can run in single VirtualBox VM machine. This solution replaces +the previously used Vagrant environment based on 3 VMs. + +VirtualBox VM MAY be created by Vagrant and MUST have additional 4 virtio NICs +each pair attached to separate private networks to simulate back-to-back +connections. It SHOULD be 82545EM device model (otherwise can be changed in +boostrap scripts). Example of Vagrant configuration: + +:: + + Vagrant.configure(2) do |c| + c.vm.network "private_network", type: "dhcp", auto_config: false, + virtualbox__intnet: "port1", nic_type: "82545EM" + c.vm.network "private_network", type: "dhcp", auto_config: false, + virtualbox__intnet: "port2", nic_type: "82545EM" + + c.vm.provider :virtualbox do |v| + v.customize ["modifyvm", :id, "--nicpromisc2", "allow-all"] + v.customize ["modifyvm", :id, "--nicpromisc3", "allow-all"] + v.customize ["modifyvm", :id, "--nicpromisc4", "allow-all"] + v.customize ["modifyvm", :id, "--nicpromisc5", "allow-all"] + +Vagrant VM is populated with the following NIC models: + +#. NIC-1: 82545EM Intel. +#. NIC-2: 82545EM Intel. +#. NIC-3: 82545EM Intel. +#. NIC-4: 82545EM Intel. + +Containers +---------- + +It was agreed on :abbr:`TWS (Technical Work Stream)` call to continue with +Ubuntu 18.04 LTS as a baseline system with OPTIONAL extend to Centos 7 and +SuSE per demand [TWSLink]_. + +All :abbr:`DCR (Docker container)` images are REQUIRED to be hosted on Docker +registry available from LF network, publicly available and trackable. For +backup, tracking and contributing purposes all Dockerfiles (including files +needed for building container) MUST be available and stored in [fdiocsitgerrit]_ +repository under appropriate folders. This allows the peer review process to be +done for every change of infrastructure related to scope of this document. +Currently only **csit-shim-dcr** and **csit-sut-dcr** containers will be stored +and maintained under CSIT repository by CSIT contributors. + +At the time of designing solution described in this document the interconnection +between [dockerhub]_ and [fdiocsitgerrit]_ for automated build purposes and +image hosting cannot be established with the trust and respectful to +security of FD.io project. Unless adressed, :abbr:`DCR` images will be placed in +custom registry service [fdioregistry]_. Automated Jenkins jobs will be created +in align of long term solution for container lifecycle and ability to build +new version of docker images. + +In parallel, the effort is started to find the outsourced Docker registry +service. + +Versioning +~~~~~~~~~~ + +As of initial version of vpp-device, we do have only single latest version of +Docker image hosted on [dockerhub]_. This will be addressed as further +improvement with proper semantic versioning. + +jenkins-slave-dcr +~~~~~~~~~~~~~~~~~ + +This :abbr:`DCR` acts as the Jenkins slave (known also as jenkins minion). It +can connect over SSH protocol to TCP port 6022 of **csit-shim-dcr** and executes +non-interactive reservation script. Nomad is responsible for scheduling this +container execution onto specific **1-Node VPP_Device** testbed. It executes +:abbr:`CSIT` environment including :abbr:`CSIT` framework. + +All software dependencies including VPP/DPDK that are not present in +**csit-sut-dcr** container image and/or needs to be compiled prior running on +**csit-sut-dcr** SHOULD be compiled in this container. + +- *Container Image Location*: Docker image at snergster/vpp-ubuntu18. + +- *Container Definition*: Docker file specified at [JenkinsSlaveDcrFile]_. + +- *Initializing*: Container is initialized from within *Consul by HashiCorp* + and *Nomad by HashiCorp*. + +csit-shim-dcr +~~~~~~~~~~~~~ + +This :abbr:`DCR` acts as an intermediate layer running script responsible for +orchestrating topologies under test and reservation. Responsible for managing VF +resources and allocation to :abbr:`DUT (Device Under Test)`, :abbr:`TG +(Traffic Generator)` containers. This MUST to be done on **csit-shim-dcr**. +This image also acts as the generic reservation mechanics arbiter to make sure +that only Y number of simulations are spawned on any given HW node. + +- *Container Image Location*: Docker image at snergster/csit-shim. + +- *Container Definition*: Docker file specified at [CsitShimDcrFile]_. + +- *Initializing*: Container is initialized from within *Consul by HashiCorp* + and *Nomad by HashiCorp*. Required docker parameters, to be able to run + nested containers with VF reservation system are: privileged, net=host, + pid=host. + +- *Connectivity*: Over SSH only, using <host>:6022 format. Currently using + *root* user account as primary. From the jenkins slave it will be able to + connect via env variable, since the jenkins slave doesn't actually know what + host its running on. + + :: + + ssh -p 6022 root@10.30.51.node + +csit-sut-dcr +~~~~~~~~~~~~ + +This :abbr:`DCR` acts as an :abbr:`SUT (System Under Test)`. Any :abbr:`DUT` or +:abbr:`TG` application is installed there. It is RECOMMENDED to install DUT and +all DUT dependencies via commands ``rpm -ihv`` on RedHat based OS or ``dpkg -i`` +on Debian based OS. + +Container is designed to be a very lightweight Docker image that only installs +packages and execute binaries (previously built or downloaded on +**jenkins-slave-dcr**) and contains libraries necessary to run CSIT framework +including those required by DUT/TG. + +- *Container Image Location*: Docker image at snergster/csit-sut. + +- *Container Definition*: Docker file specified at [CsitSutDcrFile]_. + +- *Initializing*: + :: + + docker run + # Run the container in the background and print the new container ID. + --detach=true + # Give extended privileges to this container. A "privileged" container is + # given access to all devices and able to run nested containers. + --privileged + # Publish all exposed ports to random ports on the host interfaces. + --publish-all + # Automatically remove the container when it exits. + --rm + # Size of /dev/shm. + dcr_stc_params+="--shm-size 512M " + # Override access to PCI bus by attaching a filesystem mount to the + # container. + dcr_stc_params+="--mount type=tmpfs,destination=/sys/bus/pci/devices " + # Mount vfio to be able to bind to see binded interfaces. We cannot use + # --device=/dev/vfio as this does not see newly binded interfaces. + dcr_stc_params+="--volume /dev/vfio:/dev/vfio " + # Mount docker.sock to be able to use docker deamon of the host. + dcr_stc_params+="--volume /var/run/docker.sock:/var/run/docker.sock " + # Mount /opt/boot/ where VM kernel and initrd are located. + dcr_stc_params+="--volume /opt/boot/:/opt/boot/ " + # Mount host hugepages for VMs. + dcr_stc_params+="--volume /dev/hugepages/:/dev/hugepages/ " + + Container name is catenated from **csit-** prefix and uuid generated uniquely + for each container instance. + +- *Connectivity*: Over SSH only, using <host>[:<port>] format. Currently using + *root* user account as primary. + :: + + ssh -p <port> root@10.30.51.<node> + +Container required to run as ``--privileged`` due to ability to create nested +containers and have full read/write access to sysfs (for bind/unbind). Docker +automatically pick free network port (``--publish-all``) for ability to connect +over ssh. To be able to limit access to PCI bus, container is creating tmpfs +mount type in PCI bus tree. CSIT reservation script is dynamically linking only +PCI devices (NIC cards) that are reserved for particular container. This +way it is not colliding with other containers. To make vfio work, access to +``/dev/vfio`` must be granted. + +.. todo: Change default user to testuser with non-privileged and install sudo. + +Environment initialization +-------------------------- + +All 1-node servers are to be managed and provisioned via the [ansiblelink]_ set +of playbooks with *vpp-device* role. Full playbooks can be found under +[fdiocsitansible]_ directory. This way we are able to track all configuration +changes of physical servers in gerrit (in structured yaml format) as well as we +are able to extend *vpp-device* to additional servers with less effort or +re-stage servers in case of failure. + +SR-IOV VF initialization is done via ``systemd`` service during host system boot +up. Service with name *csit-initialize-vfs.service* is created under systemd +system context (``/etc/systemd/system/``). By default service is calling +``/usr/local/bin/csit-initialize-vfs.sh`` with single parameter: + +- **start**: Creates maximum number of :abbr:`virtual functions (VFs)` (detected + from ``sriov_totalvfs``) for each whitelisted PCI device. +- **stop**: Removes all :abbr:`VFs` for all whitelisted PCI device. + +Service is considered active even when all of its processes exited successfully. +Stopping service will automatically remove :abbr:`VFs`. + +:: + + [Unit] + Description=CSIT Initialize SR-IOV VFs + After=network.target + + [Service] + Type=one-shot + RemainAfterExit=True + ExecStart=/usr/local/bin/csit-initialize-vfs.sh start + ExecStop=/usr/local/bin/csit-initialize-vfs.sh stop + + [Install] + WantedBy=default.target + +Script is driven by two array variables ``pci_blacklist``/``pci_whitelist``. +They MUST store all PCI addresses in **<domain>:<bus>:<device>.<func>** format, +where: + +- **pci_blacklist**: PCI addresses to be skipped from :abbr:`VFs` + initialization (usefull for e.g. excluding management network interfaces). +- **pci_whitelist**: PCI addresses to be included for :abbr:`VFs` + initialization. + +VF reservation +-------------- + +During topology initialization phase of script, mutex is used to avoid multiple +instances of script to interact with each other during resources allocation. +Mutal exclusion ensure that no two distinct instances of script will get same +resource list. + +Reservation function reads the list of all available virtual function network +devices in system: + +:: + + # Find the first ${device_count} number of available TG Linux network + # VF device names. Only allowed VF PCI IDs are filtered. + for netdev in ${tg_netdev[@]} + do + for netdev_path in $(grep -l "${pci_id}" \ + /sys/class/net/${netdev}*/device/device \ + 2> /dev/null) + do + if [[ ${#TG_NETDEVS[@]} -lt ${device_count} ]]; then + tg_netdev_name=$(dirname ${netdev_path}) + tg_netdev_name=$(dirname ${tg_netdev_name}) + TG_NETDEVS+=($(basename ${tg_netdev_name})) + else + break + fi + done + if [[ ${#TG_NETDEVS[@]} -eq ${device_count} ]]; then + break + fi + done + +Where ``${pci_id}`` is ID of white-listed VF PCI ID. For more information please +see [pciids]_. This act as security constraint to prevent taking other unwanted +interfaces. +The output list of all VF network devices is split into two lists for TG and +SUT side of connection. First two items from each TG or SUT network devices +list are taken to expose directly to namespace of container. This can be done +via commands: + +:: + + $ ip link set ${netdev} netns ${DCR_CPIDS[tg]} + $ ip link set ${netdev} netns ${DCR_CPIDS[dut1]} + +In this stage also symbolic links to PCI devices under sysfs bus directory tree +are created in running containers. Once VF devices are assigned to container +namespace and PCI deivces are linked to running containers and mutex is exited. +Selected VF network device automatically dissapear from parent container +namespace, so another instance of script will not find device under that +namespace. + +Once Docker container exits, network device is returned back into parent +namespace and can be reused. + +Network traffic isolation - Intel i40evf +---------------------------------------- + +In a virtualized environment, on Intel(R) Server Adapters that support SR-IOV, +the virtual function (VF) may be subject to malicious behavior. Software- +generated layer two frames, like IEEE 802.3x (link flow control), IEEE 802.1Qbb +(priority based flow-control), and others of this type, are not expected and +can throttle traffic between the host and the virtual switch, reducing +performance. To resolve this issue, configure all SR-IOV enabled ports for +VLAN tagging. This configuration allows unexpected, and potentially malicious, +frames to be dropped. [inteli40e]_ + +To configure VLAN tagging for the ports on an SR-IOV enabled adapter, +use the following command. The VLAN configuration SHOULD be done +before the VF driver is loaded or the VM is booted. [inteli40e]_ + +:: + + $ ip link set dev <PF netdev id> vf <id> vlan <vlan id> + +For example, the following instructions will configure PF eth0 and +the first VF on VLAN 10. + +:: + + $ ip link set dev eth0 vf 0 vlan 10 + +VLAN Tag Packet Steering allows to send all packets with a specific VLAN tag to +a particular SR-IOV virtual function (VF). Further, this feature allows to +designate a particular VF as trusted, and allows that trusted VF to request +selective promiscuous mode on the Physical Function (PF). [inteli40e]_ + +To set a VF as trusted or untrusted, enter the following command in the +Hypervisor: + +:: + + $ ip link set dev eth0 vf 1 trust [on|off] + +Once the VF is designated as trusted, use the following commands in the VM +to set the VF to promiscuous mode. [inteli40e]_ + +- For promiscuous all: + :: + + $ ip link set eth2 promisc on + +- For promiscuous Multicast: + :: + + $ ip link set eth2 allmulti on + +.. note:: + + By default, the ethtool priv-flag vf-true-promisc-support is set to + *off*, meaning that promiscuous mode for the VF will be limited. To set the + promiscuous mode for the VF to true promiscuous and allow the VF to see + all ingress traffic, use the following command. + $ ethtool set-priv-flags p261p1 vf-true-promisc-support on + The vf-true-promisc-support priv-flag does not enable promiscuous mode; + rather, it designates which type of promiscuous mode (limited or true) + you will get when you enable promiscuous mode using the ip link commands + above. Note that this is a global setting that affects the entire device. + However,the vf-true-promisc-support priv-flag is only exposed to the first + PF of the device. The PF remains in limited promiscuous mode (unless it + is in MFP mode) regardless of the vf-true-promisc-support setting. + [inteli40e]_ + +Service described earlier *csit-initialize-vfs.service* is responsible for +assigning 802.1Q vlan tagging to each vitual function via physical function +from list of white-listed PCI addresses by following (simplified) code. + +:: + + SCRIPT_DIR="$(dirname $(readlink -e "${BASH_SOURCE[0]}"))" + source "${SCRIPT_DIR}/csit-initialize-vfs-data.sh" + + # Initilize whitelisted NICs with maximum number of VFs. + pci_idx=0 + for pci_addr in ${PCI_WHITELIST[@]}; do + if ! [[ ${PCI_BLACKLIST[*]} =~ "${pci_addr}" ]]; then + pci_path="/sys/bus/pci/devices/${pci_addr}" + # SR-IOV initialization + case "${1:-start}" in + "start" ) + sriov_totalvfs=$(< "${pci_path}"/sriov_totalvfs) + ;; + "stop" ) + sriov_totalvfs=0 + ;; + esac + echo ${sriov_totalvfs} > "${pci_path}"/sriov_numvfs + # SR-IOV 802.1Q isolation + case "${1:-start}" in + "start" ) + pf=$(basename "${pci_path}"/net/*) + for vf in $(seq "${sriov_totalvfs}"); do + # PCI address index in array (pairing siblings). + if [[ -n ${PF_INDICES[@]} ]] + then + vlan_pf_idx=${PF_INDICES[$pci_addr]} + else + vlan_pf_idx=$((pci_idx % (${#PCI_WHITELIST[@]}/2))) + fi + # 802.1Q base offset. + vlan_bs_off=1100 + # 802.1Q PF PCI address offset. + vlan_pf_off=$(( vlan_pf_idx * 100 + vlan_bs_off )) + # 802.1Q VF PCI address offset. + vlan_vf_off=$(( vlan_pf_off + vf - 1 )) + # VLAN string. + vlan_str="vlan ${vlan_vf_off}" + # MAC string. + mac5="$(printf '%x' ${pci_idx})" + mac6="$(printf '%x' $(( vf - 1 )))" + mac_str="mac ba:dc:0f:fe:${mac5}:${mac6}" + # Set 802.1Q VLAN id and MAC address + ip link set ${pf} vf $(( vf - 1)) ${mac_str} ${vlan_str} + ip link set ${pf} vf $(( vf - 1)) trust on + ip link set ${pf} vf $(( vf - 1)) spoof off + done + pci_idx=$(( pci_idx + 1 )) + ;; + esac + rmmod i40evf + modprobe i40evf + fi + done + +Assignment starts at VLAN 1100 and incrementing by 1 for each VF and by 100 for +each white-listed PCI address up to the middle of the PCI list. Second half of +the lists is assumed to be directly (cable) paired siblings and assigned with +same 802.1Q VLANs as its siblings. + +Open tasks +---------- + +Security +~~~~~~~~ + +.. note:: + + Switch to non-privileged containers: As of now all three container + flavors are using privileged containers to make it working. Explore options + to switch containers to non-privileged with explicit rather implicit + privileges. + +.. note:: + + Switch to testuser account intead of root. + +Maintainability +~~~~~~~~~~~~~~~ + +.. note:: + + Docker image distribution: Create jenkins jobs with full pipiline of + CI/CD for CSIT Docker images. + +Stability +~~~~~~~~~ + +.. note:: + + Implement queueing mechanism: Currently there is no mechanics that + would place starving jobs in queue in case of no resources available. + +.. note:: + + Replace reservation script with Docker network plugin written in + GOLANG/SH/Python - platform independent. + +Links +----- + +.. [TWSLink] `TWS <https://wiki.fd.io/view/CSIT/TWS>`_ +.. [dockerhub] `Docker hub <https://hub.docker.com/>`_ +.. [fdiocsitgerrit] `FD.io/CSIT gerrit <https://gerrit.fd.io/r/CSIT>`_ +.. [fdioregistry] `FD.io registy <registry.fdiopoc.net>`_ +.. [JenkinsSlaveDcrFile] `jenkins-slave-dcr-file <https://github.com/snergfdio/multivppcache/blob/master/ubuntu18/Dockerfile>`_ +.. [CsitShimDcrFile] `csit-shim-dcr-file <https://github.com/snergfdio/multivppcache/blob/master/csit-shim/Dockerfile>`_ +.. [CsitSutDcrFile] `csit-sut-dcr-file <https://github.com/snergfdio/multivppcache/blob/master/csit-sut/Dockerfile>`_ +.. [ansiblelink] `ansible <https://www.ansible.com/>`_ +.. [fdiocsitansible] `Fd.io/CSIT ansible <https://git.fd.io/csit/tree/resources/tools/testbed-setup/ansible>`_ +.. [inteli40e] `Intel i40e <https://downloadmirror.intel.com/26370/eng/readme.txt>`_ +.. [pciids] `pci ids <http://pci-ids.ucw.cz/v2.2/pci.ids>`_ |