aboutsummaryrefslogtreecommitdiffstats
path: root/docs/report/vpp_performance_tests/overview.rst
diff options
context:
space:
mode:
authorMaciek Konstantynowicz <mkonstan@cisco.com>2018-02-19 14:16:30 +0000
committerTibor Frank <tifrank@cisco.com>2018-02-19 14:33:02 +0000
commitcddac498bafc7a6092dade5e183e5c7a95cff64d (patch)
tree995f4d8be7530ee537a2c133900264e1532681da /docs/report/vpp_performance_tests/overview.rst
parentec52d31c064fff2a6bf9c1e0716efa881bcf106e (diff)
rls1801 report: edits to static content for vpp and dpdk perf sections.
Change-Id: I22a38d2704b3a414798823c1846ff12f8f69d7b7 Signed-off-by: Maciek Konstantynowicz <mkonstan@cisco.com>
Diffstat (limited to 'docs/report/vpp_performance_tests/overview.rst')
-rw-r--r--docs/report/vpp_performance_tests/overview.rst164
1 files changed, 98 insertions, 66 deletions
diff --git a/docs/report/vpp_performance_tests/overview.rst b/docs/report/vpp_performance_tests/overview.rst
index f243637a6f..86bea87c0b 100644
--- a/docs/report/vpp_performance_tests/overview.rst
+++ b/docs/report/vpp_performance_tests/overview.rst
@@ -10,23 +10,23 @@ CSIT VPP performance tests are executed on physical baremetal servers hosted by
:abbr:`LF (Linux Foundation)` FD.io project. Testbed physical topology is shown
in the figure below.::
- +------------------------+ +------------------------+
- | | | |
- | +------------------+ | | +------------------+ |
- | | | | | | | |
- | | <-----------------> | |
- | | DUT1 | | | | DUT2 | |
- | +--^---------------+ | | +---------------^--+ |
- | | | | | |
- | | SUT1 | | SUT2 | |
- +------------------------+ +------------------^-----+
- | |
- | |
- | +-----------+ |
- | | | |
- +------------------> TG <------------------+
- | |
- +-----------+
+ +------------------------+ +------------------------+
+ | | | |
+ | +------------------+ | | +------------------+ |
+ | | | | | | | |
+ | | <-----------------> | |
+ | | DUT1 | | | | DUT2 | |
+ | +--^---------------+ | | +---------------^--+ |
+ | | | | | |
+ | | SUT1 | | SUT2 | |
+ +------------------------+ +------------------^-----+
+ | |
+ | |
+ | +-----------+ |
+ | | | |
+ +------------------> TG <------------------+
+ | |
+ +-----------+
SUT1 and SUT2 are two System Under Test servers (Cisco UCS C240, each with two
Intel XEON CPUs), TG is a Traffic Generator (TG, another Cisco UCS C240, with
@@ -53,43 +53,59 @@ Going forward CSIT project will be looking to add more hardware into FD.io
performance labs to address larger scale multi-interface and multi-NIC
performance testing scenarios.
-For test cases that require DUT (VPP) to communicate with
-VirtualMachines (VMs) / Linux or Docker Containers (Ctrs) over
+For service chain topology test cases that require DUT (VPP) to communicate with
+VirtualMachines (VMs) or with Linux/Docker Containers (Ctrs) over
vhost-user/memif interfaces, N of VM/Ctr instances are created on SUT1
-and SUT2. For N=1 DUT forwards packets between vhost/memif and physical
-interfaces. For N>1 DUT a logical service chain forwarding topology is
-created on DUT by applying L2 or IPv4/IPv6 configuration depending on
-the test suite. DUT test topology with N VM/Ctr instances is shown in
-the figure below including applicable packet flow thru the DUTs and
-VMs/Ctrs (marked in the figure with ``***``).::
-
- +-------------------------+ +-------------------------+
- | +---------+ +---------+ | | +---------+ +---------+ |
- | |VM/Ctr[1]| |VM/Ctr[N]| | | |VM/Ctr[1]| |VM/Ctr[N]| |
- | | ***** | | ***** | | | | ***** | | ***** | |
- | +--^---^--+ +--^---^--+ | | +--^---^--+ +--^---^--+ |
- | *| |* *| |* | | *| |* *| |* |
- | +--v---v-------v---v--+ | | +--v---v-------v---v--+ |
- | | * * * * |*|***********|*| * * * * | |
- | | * ********* ***<-|-----------|->*** ********* * | |
- | | * DUT1 | | | | DUT2 * | |
- | +--^------------------+ | | +------------------^--+ |
- | *| | | |* |
- | *| SUT1 | | SUT2 |* |
- +-------------------------+ +-------------------------+
- *| |*
- *| |*
- *| +-----------+ |*
- *| | | |*
- *+--------------------> TG <--------------------+*
- **********************| |**********************
- +-----------+
-
-For VM/Ctr tests, packets are switched by DUT multiple times: twice for
-a single VM/Ctr, three times for two VMs/Ctrs, N+1 times for N VMs/Ctrs.
-Hence the external throughput rates measured by TG and listed in this
-report must be multiplied by (N+1) to represent the actual DUT aggregate
-packet forwarding rate.
+and SUT2. Three types of service chain topologies are tested in CSIT |release|:
+
+#. "Parallel" topology with packets flowing from NIC via DUT (VPP) to
+ VM/Container and back to VPP and NIC;
+
+#. "Chained" topology (a.k.a. "Snake") with packets flowing via DUT (VPP) to
+ VM/Container, back to DUT, then to the next VM/Container, back to DUT and
+ so on until the last VM/Container in a chain, then back to DUT and NIC;
+
+#. "Horizontal" topology with packets flowing via DUT (VPP) to Container,
+ then via "horizontal" memif to the next Container, and so on until the
+ last Container, then back to DUT and NIC. "Horizontal" topology is not
+ supported for VMs;
+
+For each of the above topologies, DUT (VPP) is tested in a range of L2
+or IPv4/IPv6 configurations depending on the test suite. A sample DUT
+"Chained" service topology with N of VM/Ctr instances is shown in the
+figure below. Packet flow thru the DUTs and VMs/Ctrs is marked with
+``***``::
+
+ +-------------------------+ +-------------------------+
+ | +---------+ +---------+ | | +---------+ +---------+ |
+ | |VM/Ctr[1]| |VM/Ctr[N]| | | |VM/Ctr[1]| |VM/Ctr[N]| |
+ | | ***** | | ***** | | | | ***** | | ***** | |
+ | +--^---^--+ +--^---^--+ | | +--^---^--+ +--^---^--+ |
+ | *| |* *| |* | | *| |* *| |* |
+ | +--v---v-------v---v--+ | | +--v---v-------v---v--+ |
+ | | * * * * |*|***********|*| * * * * | |
+ | | * ********* ***<-|-----------|->*** ********* * | |
+ | | * DUT1 | | | | DUT2 * | |
+ | +--^------------------+ | | +------------------^--+ |
+ | *| | | |* |
+ | *| SUT1 | | SUT2 |* |
+ +-------------------------+ +-------------------------+
+ *| |*
+ *| |*
+ *| +-----------+ |*
+ *| | | |*
+ *+--------------------> TG <--------------------+*
+ **********************| |**********************
+ +-----------+
+
+In above "Chained" topology, packets are switched by DUT multiple times:
+twice for a single VM/Ctr, three times for two VMs/Ctrs, N+1 times for N
+VMs/Ctrs. Hence the external throughput rates measured by TG and listed
+in this report must be multiplied by (N+1) to represent the actual DUT
+aggregate packet forwarding rate.
+
+For a "Parallel" and "Horizontal" service topologies packets are always
+switched by DUT twice per service chain.
Note that reported DUT (VPP) performance results are specific to the SUTs
tested. Current :abbr:`LF (Linux Foundation)` FD.io SUTs are based on Intel
@@ -162,8 +178,8 @@ CSIT |release| includes following performance test suites, listed per NIC type:
number of users and ports per user.
- **Container memif connections** - VPP memif virtual interface tests to
interconnect VPP instances with L2XC and L2BD.
- - **Container K8s Orchestrated Topologies** - Container topologies connected over
- the memif virtual interface.
+ - **Container K8s Orchestrated Topologies** - Container topologies connected
+ over the memif virtual interface.
- **SRv6** - Segment Routing IPv6 tests.
- 2port40GE XL710 Intel
@@ -236,11 +252,17 @@ following VPP thread and core configurations:
#. 1t1c - 1 VPP worker thread on 1 CPU physical core.
#. 2t2c - 2 VPP worker threads on 2 CPU physical cores.
+#. 4t4c - 4 VPP worker threads on 4 CPU physical cores.
-VPP worker threads are the data plane threads. VPP control thread is running on
-a separate non-isolated core together with other Linux processes. Note that in
-quite a few test cases running VPP workers on 2 physical cores hits the tested
-NIC I/O bandwidth or packets-per-second limit.
+VPP worker threads are the data plane threads. VPP control thread is
+running on a separate non-isolated core together with other Linux
+processes. Note that in quite a few test cases running VPP workers on 2
+or 4 physical cores hits the I/O bandwidth or packets-per-second limit
+of tested NIC.
+
+Section :ref:`throughput_speedup_multi_core` includes a set of graphs
+illustrating packet throughout speedup when running VPP on multiple
+cores.
Methodology: Packet Throughput
------------------------------
@@ -250,23 +272,33 @@ Following values are measured and reported for packet throughput tests:
- NDR binary search per :rfc:`2544`:
- Packet rate: "RATE: <aggregate packet rate in packets-per-second> pps
- (2x <per direction packets-per-second>)"
+ (2x <per direction packets-per-second>)";
- Aggregate bandwidth: "BANDWIDTH: <aggregate bandwidth in Gigabits per
- second> Gbps (untagged)"
+ second> Gbps (untagged)";
- PDR binary search per :rfc:`2544`:
- Packet rate: "RATE: <aggregate packet rate in packets-per-second> pps (2x
- <per direction packets-per-second>)"
+ <per direction packets-per-second>)";
- Aggregate bandwidth: "BANDWIDTH: <aggregate bandwidth in Gigabits per
- second> Gbps (untagged)"
+ second> Gbps (untagged)";
- Packet loss tolerance: "LOSS_ACCEPTANCE <accepted percentage of packets
- lost at PDR rate>""
+ lost at PDR rate>";
- NDR and PDR are measured for the following L2 frame sizes:
- - IPv4: 64B, IMIX_v4_1 (28x64B,16x570B,4x1518B), 1518B, 9000B.
- - IPv6: 78B, 1518B, 9000B.
+ - IPv4: 64B, IMIX_v4_1 (28x64B,16x570B,4x1518B), 1518B, 9000B;
+ - IPv6: 78B, 1518B, 9000B;
+
+- NDR and PDR binary search resolution is determined by the final value of the
+ rate change, referred to as the final step:
+
+ - The final step is set to 50kpps for all NIC to NIC tests and all L2
+ frame sizes except 9000B (changed from 100kpps used in previous
+ releases).
+
+ - The final step is set to 10kpps for all remaining tests, including 9000B
+ and all vhost VM and memif Container tests.
All rates are reported from external Traffic Generator perspective.