aboutsummaryrefslogtreecommitdiffstats
path: root/docs/report/vpp_performance_tests/throughput_speedup_multi_core/container_memif-2n-clx-cx556a.rst
diff options
context:
space:
mode:
authorVratko Polak <vrpolak@cisco.com>2020-02-03 13:15:49 +0100
committerVratko Polak <vrpolak@cisco.com>2020-02-03 13:15:49 +0100
commit7a035831fc06de7849876b782bf6f97136a39208 (patch)
tree34f0dd27d146b450f2561d382cfa4ea7e11a21d1 /docs/report/vpp_performance_tests/throughput_speedup_multi_core/container_memif-2n-clx-cx556a.rst
parent27fbd8171dcc2a3982274224ccb4979e56a22e87 (diff)
Autogen: Fix typo affecting DPDK
With the typo, only the first type+nic combination is generated. With fix, all combinations are generated. Change-Id: Ieb2db31cebed4940b063505b70f4d12a30da489c Signed-off-by: Vratko Polak <vrpolak@cisco.com>
Diffstat (limited to 'docs/report/vpp_performance_tests/throughput_speedup_multi_core/container_memif-2n-clx-cx556a.rst')
0 files changed, 0 insertions, 0 deletions
id='n347' href='#n347'>347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
/*-
 *   BSD LICENSE
 *
 *   Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
 *   All rights reserved.
 *
 *   Redistribution and use in source and binary forms, with or without
 *   modification, are permitted provided that the following conditions
 *   are met:
 *
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in
 *       the documentation and/or other materials provided with the
 *       distribution.
 *     * Neither the name of Intel Corporation nor the names of its
 *       contributors may be used to endorse or promote products derived
 *       from this software without specific prior written permission.
 *
 *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include <stdio.h>
#include <stdint.h>
#include <inttypes.h>
#include <sys/queue.h>

#include <rte_random.h>
#include <rte_cycles.h>
#include <rte_memory.h>
#include <rte_memzone.h>
#include <rte_eal.h>
#include <rte_eal_memconfig.h>
#include <rte_common.h>
#include <rte_string_fns.h>
#include <rte_errno.h>
#include <rte_malloc.h>
#include "../../lib/librte_eal/common/malloc_elem.h"

#include "test.h"

/*
 * Memzone
 * =======
 *
 * - Search for three reserved zones or reserve them if they do not exist:
 *
 *   - One is on any socket id.
 *   - The second is on socket 0.
 *   - The last one is on socket 1 (if socket 1 exists).
 *
 * - Check that the zones exist.
 *
 * - Check that the zones are cache-aligned.
 *
 * - Check that zones do not overlap.
 *
 * - Check that the zones are on the correct socket id.
 *
 * - Check that a lookup of the first zone returns the same pointer.
 *
 * - Check that it is not possible to create another zone with the
 *   same name as an existing zone.
 *
 * - Check flags for specific huge page size reservation
 */

/* Test if memory overlaps: return 1 if true, or 0 if false. */
static int
is_memory_overlap(phys_addr_t ptr1, size_t len1, phys_addr_t ptr2, size_t len2)
{
	if (ptr2 >= ptr1 && (ptr2 - ptr1) < len1)
		return 1;
	else if (ptr2 < ptr1 && (ptr1 - ptr2) < len2)
		return 1;
	return 0;
}

static int
test_memzone_invalid_alignment(void)
{
	const struct rte_memzone * mz;

	mz = rte_memzone_lookup("invalid_alignment");
	if (mz != NULL) {
		printf("Zone with invalid alignment has been reserved\n");
		return -1;
	}

	mz = rte_memzone_reserve_aligned("invalid_alignment", 100,
			SOCKET_ID_ANY, 0, 100);
	if (mz != NULL) {
		printf("Zone with invalid alignment has been reserved\n");
		return -1;
	}
	return 0;
}

static int
test_memzone_reserving_zone_size_bigger_than_the_maximum(void)
{
	const struct rte_memzone * mz;

	mz = rte_memzone_lookup("zone_size_bigger_than_the_maximum");
	if (mz != NULL) {
		printf("zone_size_bigger_than_the_maximum has been reserved\n");
		return -1;
	}

	mz = rte_memzone_reserve("zone_size_bigger_than_the_maximum", (size_t)-1,
			SOCKET_ID_ANY, 0);
	if (mz != NULL) {
		printf("It is impossible to reserve such big a memzone\n");
		return -1;
	}

	return 0;
}

static int
test_memzone_reserve_flags(void)
{
	const struct rte_memzone *mz;
	const struct rte_memseg *ms;
	int hugepage_2MB_avail = 0;
	int hugepage_1GB_avail = 0;
	int hugepage_16MB_avail = 0;
	int hugepage_16GB_avail = 0;
	const size_t size = 100;
	int i = 0;
	ms = rte_eal_get_physmem_layout();
	for (i = 0; i < RTE_MAX_MEMSEG; i++) {
		if (ms[i].hugepage_sz == RTE_PGSIZE_2M)
			hugepage_2MB_avail = 1;
		if (ms[i].hugepage_sz == RTE_PGSIZE_1G)
			hugepage_1GB_avail = 1;
		if (ms[i].hugepage_sz == RTE_PGSIZE_16M)
			hugepage_16MB_avail = 1;
		if (ms[i].hugepage_sz == RTE_PGSIZE_16G)
			hugepage_16GB_avail = 1;
	}
	/* Display the availability of 2MB ,1GB, 16MB, 16GB pages */
	if (hugepage_2MB_avail)
		printf("2MB Huge pages available\n");
	if (hugepage_1GB_avail)
		printf("1GB Huge pages available\n");
	if (hugepage_16MB_avail)
		printf("16MB Huge pages available\n");
	if (hugepage_16GB_avail)
		printf("16GB Huge pages available\n");
	/*
	 * If 2MB pages available, check that a small memzone is correctly
	 * reserved from 2MB huge pages when requested by the RTE_MEMZONE_2MB flag.
	 * Also check that RTE_MEMZONE_SIZE_HINT_ONLY flag only defaults to an
	 * available page size (i.e 1GB ) when 2MB pages are unavailable.
	 */
	if (hugepage_2MB_avail) {
		mz = rte_memzone_reserve("flag_zone_2M", size, SOCKET_ID_ANY,
				RTE_MEMZONE_2MB);
		if (mz == NULL) {
			printf("MEMZONE FLAG 2MB\n");
			return -1;
		}
		if (mz->hugepage_sz != RTE_PGSIZE_2M) {
			printf("hugepage_sz not equal 2M\n");
			return -1;
		}

		mz = rte_memzone_reserve("flag_zone_2M_HINT", size, SOCKET_ID_ANY,
				RTE_MEMZONE_2MB|RTE_MEMZONE_SIZE_HINT_ONLY);
		if (mz == NULL) {
			printf("MEMZONE FLAG 2MB\n");
			return -1;
		}
		if (mz->hugepage_sz != RTE_PGSIZE_2M) {
			printf("hugepage_sz not equal 2M\n");
			return -1;
		}

		/* Check if 1GB huge pages are unavailable, that function fails unless
		 * HINT flag is indicated
		 */
		if (!hugepage_1GB_avail) {
			mz = rte_memzone_reserve("flag_zone_1G_HINT", size, SOCKET_ID_ANY,
					RTE_MEMZONE_1GB|RTE_MEMZONE_SIZE_HINT_ONLY);
			if (mz == NULL) {
				printf("MEMZONE FLAG 1GB & HINT\n");
				return -1;
			}
			if (mz->hugepage_sz != RTE_PGSIZE_2M) {
				printf("hugepage_sz not equal 2M\n");
				return -1;
			}

			mz = rte_memzone_reserve("flag_zone_1G", size, SOCKET_ID_ANY,
					RTE_MEMZONE_1GB);
			if (mz != NULL) {
				printf("MEMZONE FLAG 1GB\n");
				return -1;
			}
		}
	}

	/*As with 2MB tests above for 1GB huge page requests*/
	if (hugepage_1GB_avail) {
		mz = rte_memzone_reserve("flag_zone_1G", size, SOCKET_ID_ANY,
				RTE_MEMZONE_1GB);
		if (mz == NULL) {
			printf("MEMZONE FLAG 1GB\n");
			return -1;
		}
		if (mz->hugepage_sz != RTE_PGSIZE_1G) {
			printf("hugepage_sz not equal 1G\n");
			return -1;
		}

		mz = rte_memzone_reserve("flag_zone_1G_HINT", size, SOCKET_ID_ANY,
				RTE_MEMZONE_1GB|RTE_MEMZONE_SIZE_HINT_ONLY);
		if (mz == NULL) {
			printf("MEMZONE FLAG 1GB\n");
			return -1;
		}
		if (mz->hugepage_sz != RTE_PGSIZE_1G) {
			printf("hugepage_sz not equal 1G\n");
			return -1;
		}

		/* Check if 1GB huge pages are unavailable, that function fails unless
		 * HINT flag is indicated
		 */
		if (!hugepage_2MB_avail) {
			mz = rte_memzone_reserve("flag_zone_2M_HINT", size, SOCKET_ID_ANY,
					RTE_MEMZONE_2MB|RTE_MEMZONE_SIZE_HINT_ONLY);
			if (mz == NULL){
				printf("MEMZONE FLAG 2MB & HINT\n");
				return -1;
			}
			if (mz->hugepage_sz != RTE_PGSIZE_1G) {
				printf("hugepage_sz not equal 1G\n");
				return -1;
			}
			mz = rte_memzone_reserve("flag_zone_2M", size, SOCKET_ID_ANY,
					RTE_MEMZONE_2MB);
			if (mz != NULL) {
				printf("MEMZONE FLAG 2MB\n");
				return -1;
			}
		}

		if (hugepage_2MB_avail && hugepage_1GB_avail) {
			mz = rte_memzone_reserve("flag_zone_2M_HINT", size, SOCKET_ID_ANY,
								RTE_MEMZONE_2MB|RTE_MEMZONE_1GB);
			if (mz != NULL) {
				printf("BOTH SIZES SET\n");
				return -1;
			}
		}
	}
	/*
	 * This option is for IBM Power. If 16MB pages available, check
	 * that a small memzone is correctly reserved from 16MB huge pages
	 * when requested by the RTE_MEMZONE_16MB flag. Also check that
	 * RTE_MEMZONE_SIZE_HINT_ONLY flag only defaults to an available
	 * page size (i.e 16GB ) when 16MB pages are unavailable.
	 */
	if (hugepage_16MB_avail) {
		mz = rte_memzone_reserve("flag_zone_16M", size, SOCKET_ID_ANY,
				RTE_MEMZONE_16MB);
		if (mz == NULL) {
			printf("MEMZONE FLAG 16MB\n");
			return -1;
		}
		if (mz->hugepage_sz != RTE_PGSIZE_16M) {
			printf("hugepage_sz not equal 16M\n");
			return -1;
		}

		mz = rte_memzone_reserve("flag_zone_16M_HINT", size,
		SOCKET_ID_ANY, RTE_MEMZONE_16MB|RTE_MEMZONE_SIZE_HINT_ONLY);
		if (mz == NULL) {
			printf("MEMZONE FLAG 2MB\n");
			return -1;
		}
		if (mz->hugepage_sz != RTE_PGSIZE_16M) {
			printf("hugepage_sz not equal 16M\n");
			return -1;
		}

		/* Check if 1GB huge pages are unavailable, that function fails
		 * unless HINT flag is indicated
		 */
		if (!hugepage_16GB_avail) {
			mz = rte_memzone_reserve("flag_zone_16G_HINT", size,
				SOCKET_ID_ANY,
				RTE_MEMZONE_16GB|RTE_MEMZONE_SIZE_HINT_ONLY);
			if (mz == NULL) {
				printf("MEMZONE FLAG 16GB & HINT\n");
				return -1;
			}
			if (mz->hugepage_sz != RTE_PGSIZE_16M) {
				printf("hugepage_sz not equal 16M\n");
				return -1;
			}

			mz = rte_memzone_reserve("flag_zone_16G", size,
				SOCKET_ID_ANY, RTE_MEMZONE_16GB);
			if (mz != NULL) {
				printf("MEMZONE FLAG 16GB\n");
				return -1;
			}
		}
	}
	/*As with 16MB tests above for 16GB huge page requests*/
	if (hugepage_16GB_avail) {
		mz = rte_memzone_reserve("flag_zone_16G", size, SOCKET_ID_ANY,
				RTE_MEMZONE_16GB);
		if (mz == NULL) {
			printf("MEMZONE FLAG 16GB\n");
			return -1;
		}
		if (mz->hugepage_sz != RTE_PGSIZE_16G) {
			printf("hugepage_sz not equal 16G\n");
			return -1;
		}

		mz = rte_memzone_reserve("flag_zone_16G_HINT", size,
		SOCKET_ID_ANY, RTE_MEMZONE_16GB|RTE_MEMZONE_SIZE_HINT_ONLY);
		if (mz == NULL) {
			printf("MEMZONE FLAG 16GB\n");
			return -1;
		}
		if (mz->hugepage_sz != RTE_PGSIZE_16G) {
			printf("hugepage_sz not equal 16G\n");
			return -1;
		}

		/* Check if 1GB huge pages are unavailable, that function fails
		 * unless HINT flag is indicated
		 */
		if (!hugepage_16MB_avail) {
			mz = rte_memzone_reserve("flag_zone_16M_HINT", size,
				SOCKET_ID_ANY,
				RTE_MEMZONE_16MB|RTE_MEMZONE_SIZE_HINT_ONLY);
			if (mz == NULL) {
				printf("MEMZONE FLAG 16MB & HINT\n");
				return -1;
			}
			if (mz->hugepage_sz != RTE_PGSIZE_16G) {
				printf("hugepage_sz not equal 16G\n");
				return -1;
			}
			mz = rte_memzone_reserve("flag_zone_16M", size,
				SOCKET_ID_ANY, RTE_MEMZONE_16MB);
			if (mz != NULL) {
				printf("MEMZONE FLAG 16MB\n");
				return -1;
			}
		}

		if (hugepage_16MB_avail && hugepage_16GB_avail) {
			mz = rte_memzone_reserve("flag_zone_16M_HINT", size,
				SOCKET_ID_ANY,
				RTE_MEMZONE_16MB|RTE_MEMZONE_16GB);
			if (mz != NULL) {
				printf("BOTH SIZES SET\n");
				return -1;
			}
		}
	}
	return 0;
}


/* Find the heap with the greatest free block size */
static size_t
find_max_block_free_size(const unsigned _align)
{
	struct rte_malloc_socket_stats stats;
	unsigned i, align = _align;
	size_t len = 0;

	for (i = 0; i < RTE_MAX_NUMA_NODES; i++) {
		rte_malloc_get_socket_stats(i, &stats);
		if (stats.greatest_free_size > len)
			len = stats.greatest_free_size;
	}

	if (align < RTE_CACHE_LINE_SIZE)
		align = RTE_CACHE_LINE_ROUNDUP(align+1);

	if (len <= MALLOC_ELEM_OVERHEAD + align)
		return 0;

	return len - MALLOC_ELEM_OVERHEAD - align;
}

static int
test_memzone_reserve_max(void)
{
	const struct rte_memzone *mz;
	size_t maxlen;

	maxlen = find_max_block_free_size(0);

	if (maxlen == 0) {
		printf("There is no space left!\n");
		return 0;
	}

	mz = rte_memzone_reserve("max_zone", 0, SOCKET_ID_ANY, 0);
	if (mz == NULL){
		printf("Failed to reserve a big chunk of memory - %s\n",
				rte_strerror(rte_errno));
		rte_dump_physmem_layout(stdout);
		rte_memzone_dump(stdout);
		return -1;
	}

	if (mz->len != maxlen) {
		printf("Memzone reserve with 0 size did not return bigest block\n");
		printf("Expected size = %zu, actual size = %zu\n", maxlen, mz->len);
		rte_dump_physmem_layout(stdout);
		rte_memzone_dump(stdout);
		return -1;
	}
	return 0;
}

static int
test_memzone_reserve_max_aligned(void)
{
	const struct rte_memzone *mz;
	size_t maxlen = 0;

	/* random alignment */
	rte_srand((unsigned)rte_rdtsc());
	const unsigned align = 1 << ((rte_rand() % 8) + 5); /* from 128 up to 4k alignment */

	maxlen = find_max_block_free_size(align);

	if (maxlen == 0) {
		printf("There is no space left for biggest %u-aligned memzone!\n", align);
		return 0;
	}

	mz = rte_memzone_reserve_aligned("max_zone_aligned", 0,
			SOCKET_ID_ANY, 0, align);
	if (mz == NULL){
		printf("Failed to reserve a big chunk of memory - %s\n",
				rte_strerror(rte_errno));
		rte_dump_physmem_layout(stdout);
		rte_memzone_dump(stdout);
		return -1;
	}

	if (mz->len != maxlen) {
		printf("Memzone reserve with 0 size and alignment %u did not return"
				" bigest block\n", align);
		printf("Expected size = %zu, actual size = %zu\n",
				maxlen, mz->len);
		rte_dump_physmem_layout(stdout);
		rte_memzone_dump(stdout);
		return -1;
	}
	return 0;
}

static int
test_memzone_aligned(void)
{
	const struct rte_memzone *memzone_aligned_32;
	const struct rte_memzone *memzone_aligned_128;
	const struct rte_memzone *memzone_aligned_256;
	const struct rte_memzone *memzone_aligned_512;
	const struct rte_memzone *memzone_aligned_1024;

	/* memzone that should automatically be adjusted to align on 64 bytes */
	memzone_aligned_32 = rte_memzone_reserve_aligned("aligned_32", 100,
				SOCKET_ID_ANY, 0, 32);

	/* memzone that is supposed to be aligned on a 128 byte boundary */
	memzone_aligned_128 = rte_memzone_reserve_aligned("aligned_128", 100,
				SOCKET_ID_ANY, 0, 128);

	/* memzone that is supposed to be aligned on a 256 byte boundary */
	memzone_aligned_256 = rte_memzone_reserve_aligned("aligned_256", 100,
				SOCKET_ID_ANY, 0, 256);

	/* memzone that is supposed to be aligned on a 512 byte boundary */
	memzone_aligned_512 = rte_memzone_reserve_aligned("aligned_512", 100,
				SOCKET_ID_ANY, 0, 512);

	/* memzone that is supposed to be aligned on a 1024 byte boundary */
	memzone_aligned_1024 = rte_memzone_reserve_aligned("aligned_1024", 100,
				SOCKET_ID_ANY, 0, 1024);

	printf("check alignments and lengths\n");
	if (memzone_aligned_32 == NULL) {
		printf("Unable to reserve 64-byte aligned memzone!\n");
		return -1;
	}
	if ((memzone_aligned_32->phys_addr & RTE_CACHE_LINE_MASK) != 0)
		return -1;
	if (((uintptr_t) memzone_aligned_32->addr & RTE_CACHE_LINE_MASK) != 0)
		return -1;
	if ((memzone_aligned_32->len & RTE_CACHE_LINE_MASK) != 0)
		return -1;

	if (memzone_aligned_128 == NULL) {
		printf("Unable to reserve 128-byte aligned memzone!\n");
		return -1;
	}
	if ((memzone_aligned_128->phys_addr & 127) != 0)
		return -1;
	if (((uintptr_t) memzone_aligned_128->addr & 127) != 0)
		return -1;
	if ((memzone_aligned_128->len & RTE_CACHE_LINE_MASK) != 0)
		return -1;

	if (memzone_aligned_256 == NULL) {
		printf("Unable to reserve 256-byte aligned memzone!\n");
		return -1;
	}
	if ((memzone_aligned_256->phys_addr & 255) != 0)
		return -1;
	if (((uintptr_t) memzone_aligned_256->addr & 255) != 0)
		return -1;
	if ((memzone_aligned_256->len & RTE_CACHE_LINE_MASK) != 0)
		return -1;

	if (memzone_aligned_512 == NULL) {
		printf("Unable to reserve 512-byte aligned memzone!\n");
		return -1;
	}
	if ((memzone_aligned_512->phys_addr & 511) != 0)
		return -1;
	if (((uintptr_t) memzone_aligned_512->addr & 511) != 0)
		return -1;
	if ((memzone_aligned_512->len & RTE_CACHE_LINE_MASK) != 0)
		return -1;

	if (memzone_aligned_1024 == NULL) {
		printf("Unable to reserve 1024-byte aligned memzone!\n");
		return -1;
	}
	if ((memzone_aligned_1024->phys_addr & 1023) != 0)
		return -1;
	if (((uintptr_t) memzone_aligned_1024->addr & 1023) != 0)
		return -1;
	if ((memzone_aligned_1024->len & RTE_CACHE_LINE_MASK) != 0)
		return -1;

	/* check that zones don't overlap */
	printf("check overlapping\n");
	if (is_memory_overlap(memzone_aligned_32->phys_addr, memzone_aligned_32->len,
					memzone_aligned_128->phys_addr, memzone_aligned_128->len))
		return -1;
	if (is_memory_overlap(memzone_aligned_32->phys_addr, memzone_aligned_32->len,
					memzone_aligned_256->phys_addr, memzone_aligned_256->len))
		return -1;
	if (is_memory_overlap(memzone_aligned_32->phys_addr, memzone_aligned_32->len,
					memzone_aligned_512->phys_addr, memzone_aligned_512->len))
		return -1;
	if (is_memory_overlap(memzone_aligned_32->phys_addr, memzone_aligned_32->len,
					memzone_aligned_1024->phys_addr, memzone_aligned_1024->len))
		return -1;
	if (is_memory_overlap(memzone_aligned_128->phys_addr, memzone_aligned_128->len,
					memzone_aligned_256->phys_addr, memzone_aligned_256->len))
		return -1;
	if (is_memory_overlap(memzone_aligned_128->phys_addr, memzone_aligned_128->len,
					memzone_aligned_512->phys_addr, memzone_aligned_512->len))
		return -1;
	if (is_memory_overlap(memzone_aligned_128->phys_addr, memzone_aligned_128->len,
					memzone_aligned_1024->phys_addr, memzone_aligned_1024->len))
		return -1;
	if (is_memory_overlap(memzone_aligned_256->phys_addr, memzone_aligned_256->len,
					memzone_aligned_512->phys_addr, memzone_aligned_512->len))
		return -1;
	if (is_memory_overlap(memzone_aligned_256->phys_addr, memzone_aligned_256->len,
					memzone_aligned_1024->phys_addr, memzone_aligned_1024->len))
		return -1;
	if (is_memory_overlap(memzone_aligned_512->phys_addr, memzone_aligned_512->len,
					memzone_aligned_1024->phys_addr, memzone_aligned_1024->len))
		return -1;
	return 0;
}

static int
check_memzone_bounded(const char *name, uint32_t len,  uint32_t align,
	uint32_t bound)
{
	const struct rte_memzone *mz;
	phys_addr_t bmask;

	bmask = ~((phys_addr_t)bound - 1);

	if ((mz = rte_memzone_reserve_bounded(name, len, SOCKET_ID_ANY, 0,
			align, bound)) == NULL) {
		printf("%s(%s): memzone creation failed\n",
			__func__, name);
		return -1;
	}

	if ((mz->phys_addr & ((phys_addr_t)align - 1)) != 0) {
		printf("%s(%s): invalid phys addr alignment\n",
			__func__, mz->name);
		return -1;
	}

	if (((uintptr_t) mz->addr & ((uintptr_t)align - 1)) != 0) {
		printf("%s(%s): invalid virtual addr alignment\n",
			__func__, mz->name);
		return -1;
	}

	if ((mz->len & RTE_CACHE_LINE_MASK) != 0 || mz->len < len ||
			mz->len < RTE_CACHE_LINE_SIZE) {
		printf("%s(%s): invalid length\n",
			__func__, mz->name);
		return -1;
	}

	if ((mz->phys_addr & bmask) !=
			((mz->phys_addr + mz->len - 1) & bmask)) {
		printf("%s(%s): invalid memzone boundary %u crossed\n",
			__func__, mz->name, bound);
		return -1;
	}

	return 0;
}

static int
test_memzone_bounded(void)
{
	const struct rte_memzone *memzone_err;
	const char *name;
	int rc;

	/* should fail as boundary is not power of two */
	name = "bounded_error_31";
	if ((memzone_err = rte_memzone_reserve_bounded(name,
			100, SOCKET_ID_ANY, 0, 32, UINT32_MAX)) != NULL) {
		printf("%s(%s)created a memzone with invalid boundary "
			"conditions\n", __func__, memzone_err->name);
		return -1;
	}

	/* should fail as len is greater then boundary */
	name = "bounded_error_32";
	if ((memzone_err = rte_memzone_reserve_bounded(name,
			100, SOCKET_ID_ANY, 0, 32, 32)) != NULL) {
		printf("%s(%s)created a memzone with invalid boundary "
			"conditions\n", __func__, memzone_err->name);
		return -1;
	}

	if ((rc = check_memzone_bounded("bounded_128", 100, 128, 128)) != 0)
		return rc;

	if ((rc = check_memzone_bounded("bounded_256", 100, 256, 128)) != 0)
		return rc;

	if ((rc = check_memzone_bounded("bounded_1K", 100, 64, 1024)) != 0)
		return rc;

	if ((rc = check_memzone_bounded("bounded_1K_MAX", 0, 64, 1024)) != 0)
		return rc;

	return 0;
}

static int
test_memzone_free(void)
{
	const struct rte_memzone *mz[RTE_MAX_MEMZONE];
	int i;
	char name[20];

	mz[0] = rte_memzone_reserve("tempzone0", 2000, SOCKET_ID_ANY, 0);
	mz[1] = rte_memzone_reserve("tempzone1", 4000, SOCKET_ID_ANY, 0);

	if (mz[0] > mz[1])
		return -1;
	if (!rte_memzone_lookup("tempzone0"))
		return -1;
	if (!rte_memzone_lookup("tempzone1"))
		return -1;

	if (rte_memzone_free(mz[0])) {
		printf("Fail memzone free - tempzone0\n");
		return -1;
	}
	if (rte_memzone_lookup("tempzone0")) {
		printf("Found previously free memzone - tempzone0\n");
		return -1;
	}
	mz[2] = rte_memzone_reserve("tempzone2", 2000, SOCKET_ID_ANY, 0);

	if (mz[2] > mz[1]) {
		printf("tempzone2 should have gotten the free entry from tempzone0\n");
		return -1;
	}
	if (rte_memzone_free(mz[2])) {
		printf("Fail memzone free - tempzone2\n");
		return -1;
	}
	if (rte_memzone_lookup("tempzone2")) {
		printf("Found previously free memzone - tempzone2\n");
		return -1;
	}
	if (rte_memzone_free(mz[1])) {
		printf("Fail memzone free - tempzone1\n");
		return -1;
	}
	if (rte_memzone_lookup("tempzone1")) {
		printf("Found previously free memzone - tempzone1\n");
		return -1;
	}

	i = 0;
	do {
		snprintf(name, sizeof(name), "tempzone%u", i);
		mz[i] = rte_memzone_reserve(name, 1, SOCKET_ID_ANY, 0);
	} while (mz[i++] != NULL);

	if (rte_memzone_free(mz[0])) {
		printf("Fail memzone free - tempzone0\n");
		return -1;
	}
	mz[0] = rte_memzone_reserve("tempzone0new", 0, SOCKET_ID_ANY, 0);

	if (mz[0] == NULL) {
		printf("Fail to create memzone - tempzone0new - when MAX memzones were "
				"created and one was free\n");
		return -1;
	}

	for (i = i - 2; i >= 0; i--) {
		if (rte_memzone_free(mz[i])) {
			printf("Fail memzone free - tempzone%d\n", i);
			return -1;
		}
	}

	return 0;
}

static int
test_memzone(void)
{
	const struct rte_memzone *memzone1;
	const struct rte_memzone *memzone2;
	const struct rte_memzone *memzone3;
	const struct rte_memzone *memzone4;
	const struct rte_memzone *mz;

	memzone1 = rte_memzone_reserve("testzone1", 100,
				SOCKET_ID_ANY, 0);

	memzone2 = rte_memzone_reserve("testzone2", 1000,
				0, 0);

	memzone3 = rte_memzone_reserve("testzone3", 1000,
				1, 0);

	memzone4 = rte_memzone_reserve("testzone4", 1024,
				SOCKET_ID_ANY, 0);

	/* memzone3 may be NULL if we don't have NUMA */
	if (memzone1 == NULL || memzone2 == NULL || memzone4 == NULL)
		return -1;

	rte_memzone_dump(stdout);

	/* check cache-line alignments */
	printf("check alignments and lengths\n");

	if ((memzone1->phys_addr & RTE_CACHE_LINE_MASK) != 0)
		return -1;
	if ((memzone2->phys_addr & RTE_CACHE_LINE_MASK) != 0)
		return -1;
	if (memzone3 != NULL && (memzone3->phys_addr & RTE_CACHE_LINE_MASK) != 0)
		return -1;
	if ((memzone1->len & RTE_CACHE_LINE_MASK) != 0 || memzone1->len == 0)
		return -1;
	if ((memzone2->len & RTE_CACHE_LINE_MASK) != 0 || memzone2->len == 0)
		return -1;
	if (memzone3 != NULL && ((memzone3->len & RTE_CACHE_LINE_MASK) != 0 ||
			memzone3->len == 0))
		return -1;
	if (memzone4->len != 1024)
		return -1;

	/* check that zones don't overlap */
	printf("check overlapping\n");

	if (is_memory_overlap(memzone1->phys_addr, memzone1->len,
			memzone2->phys_addr, memzone2->len))
		return -1;
	if (memzone3 != NULL &&
			is_memory_overlap(memzone1->phys_addr, memzone1->len,
					memzone3->phys_addr, memzone3->len))
		return -1;
	if (memzone3 != NULL &&
			is_memory_overlap(memzone2->phys_addr, memzone2->len,
					memzone3->phys_addr, memzone3->len))
		return -1;

	printf("check socket ID\n");

	/* memzone2 must be on socket id 0 and memzone3 on socket 1 */
	if (memzone2->socket_id != 0)
		return -1;
	if (memzone3 != NULL && memzone3->socket_id != 1)
		return -1;

	printf("test zone lookup\n");
	mz = rte_memzone_lookup("testzone1");
	if (mz != memzone1)
		return -1;

	printf("test duplcate zone name\n");
	mz = rte_memzone_reserve("testzone1", 100,
			SOCKET_ID_ANY, 0);
	if (mz != NULL)
		return -1;

	printf("test free memzone\n");
	if (test_memzone_free() < 0)
		return -1;

	printf("test reserving memzone with bigger size than the maximum\n");
	if (test_memzone_reserving_zone_size_bigger_than_the_maximum() < 0)
		return -1;

	printf("test memzone_reserve flags\n");
	if (test_memzone_reserve_flags() < 0)
		return -1;

	printf("test alignment for memzone_reserve\n");
	if (test_memzone_aligned() < 0)
		return -1;

	printf("test boundary alignment for memzone_reserve\n");
	if (test_memzone_bounded() < 0)
		return -1;

	printf("test invalid alignment for memzone_reserve\n");
	if (test_memzone_invalid_alignment() < 0)
		return -1;

	printf("test reserving the largest size memzone possible\n");
	if (test_memzone_reserve_max() < 0)
		return -1;

	printf("test reserving the largest size aligned memzone possible\n");
	if (test_memzone_reserve_max_aligned() < 0)
		return -1;

	return 0;
}

REGISTER_TEST_COMMAND(memzone_autotest, test_memzone);