aboutsummaryrefslogtreecommitdiffstats
path: root/resources/tools/presentation/generator_CPTA.py
diff options
context:
space:
mode:
authorTibor Frank <tifrank@cisco.com>2018-04-17 07:28:54 +0200
committerTibor Frank <tifrank@cisco.com>2018-04-17 07:28:54 +0200
commit23731f392ad8705b17cf37f9c2d397b20305f924 (patch)
treeb8052d28bc21c8b4dc07dfd6b5ae6a15c491962b /resources/tools/presentation/generator_CPTA.py
parent9821b058c2f4901a9b4d66667018da214513ab28 (diff)
CSIT-1041: Trending dashboard
Change-Id: I983c5cccd165fb32742d395cf7e8aa02c7f9394a Signed-off-by: Tibor Frank <tifrank@cisco.com>
Diffstat (limited to 'resources/tools/presentation/generator_CPTA.py')
-rw-r--r--resources/tools/presentation/generator_CPTA.py16
1 files changed, 9 insertions, 7 deletions
diff --git a/resources/tools/presentation/generator_CPTA.py b/resources/tools/presentation/generator_CPTA.py
index 3a8ea93e0a..066bfbddc8 100644
--- a/resources/tools/presentation/generator_CPTA.py
+++ b/resources/tools/presentation/generator_CPTA.py
@@ -164,19 +164,21 @@ def _evaluate_results(in_data, trimmed_data, window=10):
if len(in_data) > 2:
win_size = in_data.size if in_data.size < window else window
- results = [0.0, ] * win_size
+ results = [0.0, ]
median = in_data.rolling(window=win_size).median()
stdev_t = trimmed_data.rolling(window=win_size, min_periods=2).std()
m_vals = median.values
s_vals = stdev_t.values
d_vals = in_data.values
- for day in range(win_size, in_data.size):
- if np.isnan(m_vals[day - 1]) or np.isnan(s_vals[day - 1]):
+ for day in range(1, in_data.size):
+ if np.isnan(m_vals[day]) \
+ or np.isnan(s_vals[day]) \
+ or np.isnan(d_vals[day]):
results.append(0.0)
- elif d_vals[day] < (m_vals[day - 1] - 3 * s_vals[day - 1]):
+ elif d_vals[day] < (m_vals[day] - 3 * s_vals[day]):
results.append(0.33)
- elif (m_vals[day - 1] - 3 * s_vals[day - 1]) <= d_vals[day] <= \
- (m_vals[day - 1] + 3 * s_vals[day - 1]):
+ elif (m_vals[day] - 3 * s_vals[day]) <= d_vals[day] <= \
+ (m_vals[day] + 3 * s_vals[day]):
results.append(0.66)
else:
results.append(1.0)
@@ -244,7 +246,7 @@ def _generate_trending_traces(in_data, build_info, period, moving_win_size=10,
data_y = [val for val in in_data.values()]
data_pd = pd.Series(data_y, index=data_x)
- t_data, outliers = find_outliers(data_pd)
+ t_data, outliers = find_outliers(data_pd, outlier_const=1.5)
results = _evaluate_results(data_pd, t_data, window=moving_win_size)