aboutsummaryrefslogtreecommitdiffstats
path: root/resources/tools/presentation/generator_CPTA.py
diff options
context:
space:
mode:
authorTibor Frank <tifrank@cisco.com>2018-05-28 09:02:35 +0200
committerTibor Frank <tifrank@cisco.com>2018-05-29 08:48:46 +0200
commitf31dbcd6553ca6e7436736a5bc3aeec8fe18cad1 (patch)
tree93ab6520d8aa05595dda06f4bf885a21cc2d426e /resources/tools/presentation/generator_CPTA.py
parent6f5de201aadfbb31419c05dfae6495107a745899 (diff)
CSIT-1106: Unify the anomaly detection (plots, dashboard)
Change-Id: I27aaa5482224d1ff518aceb879cd889f2fc8d0f5 Signed-off-by: Tibor Frank <tifrank@cisco.com>
Diffstat (limited to 'resources/tools/presentation/generator_CPTA.py')
-rw-r--r--resources/tools/presentation/generator_CPTA.py135
1 files changed, 41 insertions, 94 deletions
diff --git a/resources/tools/presentation/generator_CPTA.py b/resources/tools/presentation/generator_CPTA.py
index 73d55affa2..2c62e11a97 100644
--- a/resources/tools/presentation/generator_CPTA.py
+++ b/resources/tools/presentation/generator_CPTA.py
@@ -22,13 +22,13 @@ import prettytable
import plotly.offline as ploff
import plotly.graph_objs as plgo
import plotly.exceptions as plerr
-import numpy as np
import pandas as pd
from collections import OrderedDict
from datetime import datetime
-from utils import split_outliers, archive_input_data, execute_command, Worker
+from utils import split_outliers, archive_input_data, execute_command,\
+ classify_anomalies, Worker
# Command to build the html format of the report
@@ -87,61 +87,6 @@ def generate_cpta(spec, data):
return ret_code
-def _evaluate_results(trimmed_data, window=10):
- """Evaluates if the sample value is regress, normal or progress compared to
- previous data within the window.
- We use the intervals defined as:
- - regress: less than trimmed moving median - 3 * stdev
- - normal: between trimmed moving median - 3 * stdev and median + 3 * stdev
- - progress: more than trimmed moving median + 3 * stdev
- where stdev is trimmed moving standard deviation.
-
- :param trimmed_data: Full data set with the outliers replaced by nan.
- :param window: Window size used to calculate moving average and moving stdev.
- :type trimmed_data: pandas.Series
- :type window: int
- :returns: Evaluated results.
- :rtype: list
- """
-
- if len(trimmed_data) > 2:
- win_size = trimmed_data.size if trimmed_data.size < window else window
- results = [0.66, ]
- tmm = trimmed_data.rolling(window=win_size, min_periods=2).median()
- tmstd = trimmed_data.rolling(window=win_size, min_periods=2).std()
-
- first = True
- for build_nr, value in trimmed_data.iteritems():
- if first:
- first = False
- continue
- if (np.isnan(value)
- or np.isnan(tmm[build_nr])
- or np.isnan(tmstd[build_nr])):
- results.append(0.0)
- elif value < (tmm[build_nr] - 3 * tmstd[build_nr]):
- results.append(0.33)
- elif value > (tmm[build_nr] + 3 * tmstd[build_nr]):
- results.append(1.0)
- else:
- results.append(0.66)
- else:
- results = [0.0, ]
- try:
- tmm = np.median(trimmed_data)
- tmstd = np.std(trimmed_data)
- if trimmed_data.values[-1] < (tmm - 3 * tmstd):
- results.append(0.33)
- elif (tmm - 3 * tmstd) <= trimmed_data.values[-1] <= (
- tmm + 3 * tmstd):
- results.append(0.66)
- else:
- results.append(1.0)
- except TypeError:
- results.append(None)
- return results
-
-
def _generate_trending_traces(in_data, build_info, moving_win_size=10,
show_trend_line=True, name="", color=""):
"""Generate the trending traces:
@@ -182,29 +127,27 @@ def _generate_trending_traces(in_data, build_info, moving_win_size=10,
t_data, outliers = split_outliers(data_pd, outlier_const=1.5,
window=moving_win_size)
- results = _evaluate_results(t_data, window=moving_win_size)
+ anomaly_classification = classify_anomalies(t_data, window=moving_win_size)
anomalies = pd.Series()
- anomalies_res = list()
- for idx, item in enumerate(data_pd.items()):
- item_pd = pd.Series([item[1], ], index=[item[0], ])
- if item[0] in outliers.keys():
- anomalies = anomalies.append(item_pd)
- anomalies_res.append(0.0)
- elif results[idx] in (0.33, 1.0):
- anomalies = anomalies.append(item_pd)
- anomalies_res.append(results[idx])
- anomalies_res.extend([0.0, 0.33, 0.66, 1.0])
+ anomalies_colors = list()
+ anomaly_color = {
+ "outlier": 0.0,
+ "regression": 0.33,
+ "normal": 0.66,
+ "progression": 1.0
+ }
+ if anomaly_classification:
+ for idx, item in enumerate(data_pd.items()):
+ if anomaly_classification[idx] in \
+ ("outlier", "regression", "progression"):
+ anomalies = anomalies.append(pd.Series([item[1], ],
+ index=[item[0], ]))
+ anomalies_colors.append(
+ anomaly_color[anomaly_classification[idx]])
+ anomalies_colors.extend([0.0, 0.33, 0.66, 1.0])
# Create traces
- color_scale = [[0.00, "grey"],
- [0.25, "grey"],
- [0.25, "red"],
- [0.50, "red"],
- [0.50, "white"],
- [0.75, "white"],
- [0.75, "green"],
- [1.00, "green"]]
trace_samples = plgo.Scatter(
x=xaxis,
@@ -236,8 +179,15 @@ def _generate_trending_traces(in_data, build_info, moving_win_size=10,
marker={
"size": 15,
"symbol": "circle-open",
- "color": anomalies_res,
- "colorscale": color_scale,
+ "color": anomalies_colors,
+ "colorscale": [[0.00, "grey"],
+ [0.25, "grey"],
+ [0.25, "red"],
+ [0.50, "red"],
+ [0.50, "white"],
+ [0.75, "white"],
+ [0.75, "green"],
+ [1.00, "green"]],
"showscale": True,
"line": {
"width": 2
@@ -279,7 +229,7 @@ def _generate_trending_traces(in_data, build_info, moving_win_size=10,
)
traces.append(trace_trend)
- return traces, results[-1]
+ return traces, anomaly_classification[-1]
def _generate_all_charts(spec, input_data):
@@ -371,8 +321,6 @@ def _generate_all_charts(spec, input_data):
except plerr.PlotlyEmptyDataError:
logs.append(("WARNING", "No data for the plot. Skipped."))
- logging.info(" Done.")
-
data_out = {
"csv_table": csv_tbl,
"results": res,
@@ -419,7 +367,7 @@ def _generate_all_charts(spec, input_data):
work_queue.put((chart, ))
work_queue.join()
- results = list()
+ anomaly_classifications = list()
# Create the header:
csv_table = list()
@@ -435,7 +383,7 @@ def _generate_all_charts(spec, input_data):
while not data_queue.empty():
result = data_queue.get()
- results.extend(result["results"])
+ anomaly_classifications.extend(result["results"])
csv_table.extend(result["csv_table"])
for item in result["logs"]:
@@ -487,17 +435,16 @@ def _generate_all_charts(spec, input_data):
txt_file.write(str(txt_table))
# Evaluate result:
- result = "PASS"
- for item in results:
- if item is None:
- result = "FAIL"
- break
- if item == 0.66 and result == "PASS":
- result = "PASS"
- elif item == 0.33 or item == 0.0:
- result = "FAIL"
-
- logging.info("Partial results: {0}".format(results))
+ if anomaly_classifications:
+ result = "PASS"
+ for classification in anomaly_classifications:
+ if classification == "regression" or classification == "outlier":
+ result = "FAIL"
+ break
+ else:
+ result = "FAIL"
+
+ logging.info("Partial results: {0}".format(anomaly_classifications))
logging.info("Result: {0}".format(result))
return result