aboutsummaryrefslogtreecommitdiffstats
path: root/resources/tools/presentation/generator_plots.py
diff options
context:
space:
mode:
authorTibor Frank <tifrank@cisco.com>2019-05-09 08:20:56 +0200
committerTibor Frank <tifrank@cisco.com>2019-05-09 08:20:56 +0200
commit936155da5e05d87ce8a247ddb744090e99d055bb (patch)
tree98653478c2ae05197e0766be350d2bf2d8691cce /resources/tools/presentation/generator_plots.py
parent3a5e059cfbe8961799fb5e89e716c506175332d7 (diff)
Report: NFV Graphs
Change-Id: Id27e66c62b094d1b5dc70710cc7880f06e56b907 Signed-off-by: Tibor Frank <tifrank@cisco.com>
Diffstat (limited to 'resources/tools/presentation/generator_plots.py')
-rw-r--r--resources/tools/presentation/generator_plots.py21
1 files changed, 14 insertions, 7 deletions
diff --git a/resources/tools/presentation/generator_plots.py b/resources/tools/presentation/generator_plots.py
index 48af343245..6792b0bcc1 100644
--- a/resources/tools/presentation/generator_plots.py
+++ b/resources/tools/presentation/generator_plots.py
@@ -1447,13 +1447,13 @@ def plot_service_density_heatmap_compare(plot, input_data):
if vals[key_c][key_n]["vals_r"]:
vals[key_c][key_n]["nr_r"] = len(vals[key_c][key_n]["vals_r"])
vals[key_c][key_n]["mean_r"] = \
- round(mean(vals[key_c][key_n]["vals_r"]) / 1000000, 1)
+ mean(vals[key_c][key_n]["vals_r"])
vals[key_c][key_n]["stdev_r"] = \
round(stdev(vals[key_c][key_n]["vals_r"]) / 1000000, 1)
if vals[key_c][key_n]["vals_c"]:
vals[key_c][key_n]["nr_c"] = len(vals[key_c][key_n]["vals_c"])
vals[key_c][key_n]["mean_c"] = \
- round(mean(vals[key_c][key_n]["vals_c"]) / 1000000, 1)
+ mean(vals[key_c][key_n]["vals_c"])
vals[key_c][key_n]["stdev_c"] = \
round(stdev(vals[key_c][key_n]["vals_c"]) / 1000000, 1)
@@ -1474,17 +1474,24 @@ def plot_service_density_heatmap_compare(plot, input_data):
val_r = vals[txt_chains[c - 1]][txt_nodes[n - 1]]["mean_r"]
except (KeyError, IndexError):
val_r = None
- data_r[c - 1].append(val_r)
try:
val_c = vals[txt_chains[c - 1]][txt_nodes[n - 1]]["mean_c"]
except (KeyError, IndexError):
val_c = None
- data_c[c - 1].append(val_c)
-
if val_c is not None and val_r:
- diff[c - 1].append(round((val_c - val_r) * 100 / val_r, 1))
+ val_d = (val_c - val_r) / val_r
else:
- diff[c - 1].append(None)
+ val_d = None
+
+ if val_r is not None:
+ val_r = round(val_r / 1000000, 1)
+ data_r[c - 1].append(val_r)
+ if val_c is not None:
+ val_c = round(val_c / 1000000, 1)
+ data_c[c - 1].append(val_c)
+ if val_d is not None:
+ val_d = round(val_d / 10000, 1)
+ diff[c - 1].append(val_d)
# Colorscales:
my_green = [[0.0, 'rgb(235, 249, 242)'],