aboutsummaryrefslogtreecommitdiffstats
path: root/resources/tools/presentation/new/generator_CPTA.py
diff options
context:
space:
mode:
authorVratko Polak <vrpolak@cisco.com>2018-06-11 14:47:50 +0200
committerVratko Polak <vrpolak@cisco.com>2018-06-11 14:47:50 +0200
commita03906050f719a3d80376e17cf1dc62359663433 (patch)
tree7f91c2c643490083e8c04090cfda03d1c717b14e /resources/tools/presentation/new/generator_CPTA.py
parentbeeb2acb9ac153eaa54983bea46a76d596168965 (diff)
CSIT-1110: Cherry-pick edits into new detection
+ Edit methodology documentation. Change-Id: I441e17862aba4a8572c7c532ed8995790111b4d4 Signed-off-by: Vratko Polak <vrpolak@cisco.com>
Diffstat (limited to 'resources/tools/presentation/new/generator_CPTA.py')
-rw-r--r--resources/tools/presentation/new/generator_CPTA.py154
1 files changed, 85 insertions, 69 deletions
diff --git a/resources/tools/presentation/new/generator_CPTA.py b/resources/tools/presentation/new/generator_CPTA.py
index 1b4115f1f6..4dc5e6f57a 100644
--- a/resources/tools/presentation/new/generator_CPTA.py
+++ b/resources/tools/presentation/new/generator_CPTA.py
@@ -27,7 +27,7 @@ import pandas as pd
from collections import OrderedDict
from datetime import datetime
-from utils import archive_input_data, execute_command,\
+from utils import archive_input_data, execute_command, \
classify_anomalies, Worker
@@ -87,22 +87,22 @@ def generate_cpta(spec, data):
return ret_code
-def _generate_trending_traces(in_data, build_info, moving_win_size=10,
+def _generate_trending_traces(in_data, job_name, build_info,
show_trend_line=True, name="", color=""):
"""Generate the trending traces:
- samples,
- - trimmed moving median (trending line)
- outliers, regress, progress
+ - average of normal samples (trending line)
:param in_data: Full data set.
+ :param job_name: The name of job which generated the data.
:param build_info: Information about the builds.
- :param moving_win_size: Window size.
:param show_trend_line: Show moving median (trending plot).
:param name: Name of the plot
:param color: Name of the color for the plot.
:type in_data: OrderedDict
+ :type job_name: str
:type build_info: dict
- :type moving_win_size: int
:type show_trend_line: bool
:type name: str
:type color: str
@@ -116,10 +116,15 @@ def _generate_trending_traces(in_data, build_info, moving_win_size=10,
hover_text = list()
xaxis = list()
for idx in data_x:
- hover_text.append("vpp-ref: {0}<br>csit-ref: mrr-daily-build-{1}".
- format(build_info[str(idx)][1].rsplit('~', 1)[0],
- idx))
- date = build_info[str(idx)][0]
+ if "dpdk" in job_name:
+ hover_text.append("dpdk-ref: {0}<br>csit-ref: mrr-weekly-build-{1}".
+ format(build_info[job_name][str(idx)][1].
+ rsplit('~', 1)[0], idx))
+ elif "vpp" in job_name:
+ hover_text.append("vpp-ref: {0}<br>csit-ref: mrr-daily-build-{1}".
+ format(build_info[job_name][str(idx)][1].
+ rsplit('~', 1)[0], idx))
+ date = build_info[job_name][str(idx)][0]
xaxis.append(datetime(int(date[0:4]), int(date[4:6]), int(date[6:8]),
int(date[9:11]), int(date[12:])))
@@ -227,7 +232,10 @@ def _generate_trending_traces(in_data, build_info, moving_win_size=10,
)
traces.append(trace_anomalies)
- return traces, anomaly_classification[-1]
+ if anomaly_classification:
+ return traces, anomaly_classification[-1]
+ else:
+ return traces, None
def _generate_all_charts(spec, input_data):
@@ -250,7 +258,7 @@ def _generate_all_charts(spec, input_data):
logs.append(("INFO", " Generating the chart '{0}' ...".
format(graph.get("title", ""))))
- job_name = spec.cpta["data"].keys()[0]
+ job_name = graph["data"].keys()[0]
csv_tbl = list()
res = list()
@@ -264,8 +272,10 @@ def _generate_all_charts(spec, input_data):
return
chart_data = dict()
- for job in data:
- for index, bld in job.items():
+ for job, job_data in data.iteritems():
+ if job != job_name:
+ continue
+ for index, bld in job_data.items():
for test_name, test in bld.items():
if chart_data.get(test_name, None) is None:
chart_data[test_name] = OrderedDict()
@@ -278,7 +288,7 @@ def _generate_all_charts(spec, input_data):
# Add items to the csv table:
for tst_name, tst_data in chart_data.items():
tst_lst = list()
- for bld in builds_lst:
+ for bld in builds_dict[job_name]:
itm = tst_data.get(int(bld), '')
tst_lst.append(str(itm))
csv_tbl.append("{0},".format(tst_name) + ",".join(tst_lst) + '\n')
@@ -294,8 +304,8 @@ def _generate_all_charts(spec, input_data):
test_name = test_name.split('.')[-1]
trace, rslt = _generate_trending_traces(
test_data,
+ job_name=job_name,
build_info=build_info,
- moving_win_size=win_size,
name='-'.join(test_name.split('-')[3:-1]),
color=COLORS[index])
traces.extend(trace)
@@ -320,30 +330,32 @@ def _generate_all_charts(spec, input_data):
logs.append(("WARNING", "No data for the plot. Skipped."))
data_out = {
+ "job_name": job_name,
"csv_table": csv_tbl,
"results": res,
"logs": logs
}
data_q.put(data_out)
- job_name = spec.cpta["data"].keys()[0]
-
- builds_lst = list()
- for build in spec.input["builds"][job_name]:
- status = build["status"]
- if status != "failed" and status != "not found":
- builds_lst.append(str(build["build"]))
-
- # Get "build ID": "date" dict:
- build_info = OrderedDict()
- for build in builds_lst:
- try:
- build_info[build] = (
- input_data.metadata(job_name, build)["generated"][:14],
- input_data.metadata(job_name, build)["version"]
+ builds_dict = dict()
+ for job in spec.input["builds"].keys():
+ if builds_dict.get(job, None) is None:
+ builds_dict[job] = list()
+ for build in spec.input["builds"][job]:
+ status = build["status"]
+ if status != "failed" and status != "not found":
+ builds_dict[job].append(str(build["build"]))
+
+ # Create "build ID": "date" dict:
+ build_info = dict()
+ for job_name, job_data in builds_dict.items():
+ if build_info.get(job_name, None) is None:
+ build_info[job_name] = OrderedDict()
+ for build in job_data:
+ build_info[job_name][build] = (
+ input_data.metadata(job_name, build).get("generated", ""),
+ input_data.metadata(job_name, build).get("version", "")
)
- except KeyError:
- build_info[build] = ("", "")
work_queue = multiprocessing.JoinableQueue()
manager = multiprocessing.Manager()
@@ -368,21 +380,24 @@ def _generate_all_charts(spec, input_data):
anomaly_classifications = list()
# Create the header:
- csv_table = list()
- header = "Build Number:," + ",".join(builds_lst) + '\n'
- csv_table.append(header)
- build_dates = [x[0] for x in build_info.values()]
- header = "Build Date:," + ",".join(build_dates) + '\n'
- csv_table.append(header)
- vpp_versions = [x[1] for x in build_info.values()]
- header = "VPP Version:," + ",".join(vpp_versions) + '\n'
- csv_table.append(header)
+ csv_tables = dict()
+ for job_name in builds_dict.keys():
+ if csv_tables.get(job_name, None) is None:
+ csv_tables[job_name] = list()
+ header = "Build Number:," + ",".join(builds_dict[job_name]) + '\n'
+ csv_tables[job_name].append(header)
+ build_dates = [x[0] for x in build_info[job_name].values()]
+ header = "Build Date:," + ",".join(build_dates) + '\n'
+ csv_tables[job_name].append(header)
+ versions = [x[1] for x in build_info[job_name].values()]
+ header = "Version:," + ",".join(versions) + '\n'
+ csv_tables[job_name].append(header)
while not data_queue.empty():
result = data_queue.get()
anomaly_classifications.extend(result["results"])
- csv_table.extend(result["csv_table"])
+ csv_tables[result["job_name"]].extend(result["csv_table"])
for item in result["logs"]:
if item[0] == "INFO":
@@ -404,33 +419,34 @@ def _generate_all_charts(spec, input_data):
worker.join()
# Write the tables:
- file_name = spec.cpta["output-file"] + "-trending"
- with open("{0}.csv".format(file_name), 'w') as file_handler:
- file_handler.writelines(csv_table)
-
- txt_table = None
- with open("{0}.csv".format(file_name), 'rb') as csv_file:
- csv_content = csv.reader(csv_file, delimiter=',', quotechar='"')
- line_nr = 0
- for row in csv_content:
- if txt_table is None:
- txt_table = prettytable.PrettyTable(row)
- else:
- if line_nr > 1:
- for idx, item in enumerate(row):
- try:
- row[idx] = str(round(float(item) / 1000000, 2))
- except ValueError:
- pass
- try:
- txt_table.add_row(row)
- except Exception as err:
- logging.warning("Error occurred while generating TXT table:"
- "\n{0}".format(err))
- line_nr += 1
- txt_table.align["Build Number:"] = "l"
- with open("{0}.txt".format(file_name), "w") as txt_file:
- txt_file.write(str(txt_table))
+ for job_name, csv_table in csv_tables.items():
+ file_name = spec.cpta["output-file"] + "-" + job_name + "-trending"
+ with open("{0}.csv".format(file_name), 'w') as file_handler:
+ file_handler.writelines(csv_table)
+
+ txt_table = None
+ with open("{0}.csv".format(file_name), 'rb') as csv_file:
+ csv_content = csv.reader(csv_file, delimiter=',', quotechar='"')
+ line_nr = 0
+ for row in csv_content:
+ if txt_table is None:
+ txt_table = prettytable.PrettyTable(row)
+ else:
+ if line_nr > 1:
+ for idx, item in enumerate(row):
+ try:
+ row[idx] = str(round(float(item) / 1000000, 2))
+ except ValueError:
+ pass
+ try:
+ txt_table.add_row(row)
+ except Exception as err:
+ logging.warning("Error occurred while generating TXT "
+ "table:\n{0}".format(err))
+ line_nr += 1
+ txt_table.align["Build Number:"] = "l"
+ with open("{0}.txt".format(file_name), "w") as txt_file:
+ txt_file.write(str(txt_table))
# Evaluate result:
if anomaly_classifications: