aboutsummaryrefslogtreecommitdiffstats
path: root/resources/tools/presentation/new/jumpavg/ClassifiedBitCountingMetadata.py
diff options
context:
space:
mode:
authorVratko Polak <vrpolak@cisco.com>2018-06-08 18:07:35 +0200
committerTibor Frank <tifrank@cisco.com>2018-06-11 08:30:21 +0000
commitbeeb2acb9ac153eaa54983bea46a76d596168965 (patch)
tree0465617b135a2e64693265969c48ff466db3d287 /resources/tools/presentation/new/jumpavg/ClassifiedBitCountingMetadata.py
parent3dcef45002a1b82c4503ec590d680950930fa193 (diff)
CSIT-1110: Integrate anomaly detection into PAL
+ Keep the original detection, + add the new one as subdirectory (both in source and in rendered tree). - The new detection is not rebased over "Add dpdk mrr tests to trending". New detection features: + Do not remove (nor detect) outliers. + Trend line shows the constant average within a group. + Anomaly circles are placed at the changed average. + Small bias against too similar averages. + Should be ready for moving the detection library out to pip. Change-Id: I7ab1a92b79eeeed53ba65a071b1305e927816a89 Signed-off-by: Vratko Polak <vrpolak@cisco.com>
Diffstat (limited to 'resources/tools/presentation/new/jumpavg/ClassifiedBitCountingMetadata.py')
-rw-r--r--resources/tools/presentation/new/jumpavg/ClassifiedBitCountingMetadata.py68
1 files changed, 68 insertions, 0 deletions
diff --git a/resources/tools/presentation/new/jumpavg/ClassifiedBitCountingMetadata.py b/resources/tools/presentation/new/jumpavg/ClassifiedBitCountingMetadata.py
new file mode 100644
index 0000000000..9a7277bc3e
--- /dev/null
+++ b/resources/tools/presentation/new/jumpavg/ClassifiedBitCountingMetadata.py
@@ -0,0 +1,68 @@
+# Copyright (c) 2018 Cisco and/or its affiliates.
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at:
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from BitCountingMetadata import BitCountingMetadata
+
+
+class ClassifiedBitCountingMetadata(BitCountingMetadata):
+ """Class for metadata which includes classification."""
+
+ def __init__(
+ self, max_value, size=0, avg=0.0, stdev=0.0, prev_avg=None,
+ classification=None):
+ """Delegate to ancestor constructors and set classification.
+
+ :param max_value: Maximal expected value.
+ :param size: Number of values participating in this group.
+ :param avg: Population average of the participating sample values.
+ :param stdev: Population standard deviation of the sample values.
+ :param prev_avg: Population average of the previous group.
+ If None, no previous average is taken into account.
+ If not None, the given previous average is used to discourage
+ consecutive groups with similar averages
+ (opposite triangle distribution is assumed).
+ :param classification: Arbitrary object classifying this group.
+ :type max_value: float
+ :type size: int
+ :type avg: float
+ :type stdev: float
+ :type prev_avg: float
+ :type classification: object
+ """
+ super(ClassifiedBitCountingMetadata, self).__init__(
+ max_value, size, avg, stdev, prev_avg)
+ self.classification = classification
+
+ def __str__(self):
+ """Return string with human readable description of the group.
+
+ :returns: Readable description.
+ :rtype: str
+ """
+ # str(super(...)) describes the proxy, not the proxied object.
+ super_str = super(ClassifiedBitCountingMetadata, self).__str__()
+ return super_str + " classification={classification}".format(
+ classification=self.classification)
+
+ def __repr__(self):
+ """Return string executable as Python constructor call.
+
+ :returns: Executable constructor call.
+ :rtype: str
+ """
+ return ("ClassifiedBitCountingMetadata(max_value={max_value}," +
+ "size={size},avg={avg},stdev={stdev},prev_avg={prev_avg}," +
+ "classification={cls})").format(
+ max_value=self.max_value, size=self.size, avg=self.avg,
+ stdev=self.stdev, prev_avg=self.prev_avg,
+ cls=self.classification)