aboutsummaryrefslogtreecommitdiffstats
path: root/resources/tools/presentation/new/jumpavg
diff options
context:
space:
mode:
authorVratko Polak <vrpolak@cisco.com>2018-06-08 18:07:35 +0200
committerTibor Frank <tifrank@cisco.com>2018-06-11 08:30:21 +0000
commitbeeb2acb9ac153eaa54983bea46a76d596168965 (patch)
tree0465617b135a2e64693265969c48ff466db3d287 /resources/tools/presentation/new/jumpavg
parent3dcef45002a1b82c4503ec590d680950930fa193 (diff)
CSIT-1110: Integrate anomaly detection into PAL
+ Keep the original detection, + add the new one as subdirectory (both in source and in rendered tree). - The new detection is not rebased over "Add dpdk mrr tests to trending". New detection features: + Do not remove (nor detect) outliers. + Trend line shows the constant average within a group. + Anomaly circles are placed at the changed average. + Small bias against too similar averages. + Should be ready for moving the detection library out to pip. Change-Id: I7ab1a92b79eeeed53ba65a071b1305e927816a89 Signed-off-by: Vratko Polak <vrpolak@cisco.com>
Diffstat (limited to 'resources/tools/presentation/new/jumpavg')
-rw-r--r--resources/tools/presentation/new/jumpavg/AbstractGroupClassifier.py33
-rw-r--r--resources/tools/presentation/new/jumpavg/AbstractGroupMetadata.py37
-rw-r--r--resources/tools/presentation/new/jumpavg/AvgStdevMetadata.py50
-rw-r--r--resources/tools/presentation/new/jumpavg/AvgStdevMetadataFactory.py49
-rw-r--r--resources/tools/presentation/new/jumpavg/BitCountingClassifier.py63
-rw-r--r--resources/tools/presentation/new/jumpavg/BitCountingGroup.py43
-rw-r--r--resources/tools/presentation/new/jumpavg/BitCountingGroupList.py82
-rw-r--r--resources/tools/presentation/new/jumpavg/BitCountingMetadata.py102
-rw-r--r--resources/tools/presentation/new/jumpavg/BitCountingMetadataFactory.py80
-rw-r--r--resources/tools/presentation/new/jumpavg/ClassifiedBitCountingMetadata.py68
-rw-r--r--resources/tools/presentation/new/jumpavg/ClassifiedMetadataFactory.py42
-rw-r--r--resources/tools/presentation/new/jumpavg/RunGroup.py26
-rw-r--r--resources/tools/presentation/new/jumpavg/__init__.py16
13 files changed, 691 insertions, 0 deletions
diff --git a/resources/tools/presentation/new/jumpavg/AbstractGroupClassifier.py b/resources/tools/presentation/new/jumpavg/AbstractGroupClassifier.py
new file mode 100644
index 0000000000..26db758ea8
--- /dev/null
+++ b/resources/tools/presentation/new/jumpavg/AbstractGroupClassifier.py
@@ -0,0 +1,33 @@
+# Copyright (c) 2018 Cisco and/or its affiliates.
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at:
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from abc import ABCMeta, abstractmethod
+
+
+class AbstractGroupClassifier(object):
+
+ __metaclass__ = ABCMeta
+
+ @abstractmethod
+ def classify(self, values):
+ """Divide values into consecutive groups with metadata.
+
+ The metadata does not need to follow any specific rules,
+ although progression/regression/outlier description would be fine.
+
+ :param values: Sequence of runs to classify.
+ :type values: Iterable of float or of AvgStdevMetadata
+ :returns: Classified groups
+ :rtype: Iterable of RunGroup
+ """
+ pass
diff --git a/resources/tools/presentation/new/jumpavg/AbstractGroupMetadata.py b/resources/tools/presentation/new/jumpavg/AbstractGroupMetadata.py
new file mode 100644
index 0000000000..6084db5a1a
--- /dev/null
+++ b/resources/tools/presentation/new/jumpavg/AbstractGroupMetadata.py
@@ -0,0 +1,37 @@
+# Copyright (c) 2018 Cisco and/or its affiliates.
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at:
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from abc import ABCMeta, abstractmethod
+
+
+class AbstractGroupMetadata(object):
+
+ __metaclass__ = ABCMeta
+
+ @abstractmethod
+ def __str__(self):
+ """Return string with human readable description of the group.
+
+ :returns: Readable description.
+ :rtype: str
+ """
+ pass
+
+ @abstractmethod
+ def __repr__(self):
+ """Return string executable as Python constructor call.
+
+ :returns: Executable constructor call.
+ :rtype: str
+ """
+ pass
diff --git a/resources/tools/presentation/new/jumpavg/AvgStdevMetadata.py b/resources/tools/presentation/new/jumpavg/AvgStdevMetadata.py
new file mode 100644
index 0000000000..bd7eca1824
--- /dev/null
+++ b/resources/tools/presentation/new/jumpavg/AvgStdevMetadata.py
@@ -0,0 +1,50 @@
+# Copyright (c) 2018 Cisco and/or its affiliates.
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at:
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+
+class AvgStdevMetadata(object):
+ """Class for metadata specifying the average and standard deviation."""
+
+ def __init__(self, size=0, avg=0.0, stdev=0.0):
+ """Construct the metadata by setting the values needed.
+
+ The values are sanitized, so faulty callers to not cause math errors.
+
+ :param size: Number of values participating in this group.
+ :param avg: Population average of the participating sample values.
+ :param stdev: Population standard deviation of the sample values.
+ :type size: int
+ :type avg: float
+ :type stdev: float
+ """
+ self.size = size if size >= 0 else 0
+ self.avg = avg if size >= 1 else 0.0
+ self.stdev = stdev if size >= 2 else 0.0
+
+ def __str__(self):
+ """Return string with human readable description of the group.
+
+ :returns: Readable description.
+ :rtype: str
+ """
+ return "size={size} avg={avg} stdev={stdev}".format(
+ size=self.size, avg=self.avg, stdev=self.stdev)
+
+ def __repr__(self):
+ """Return string executable as Python constructor call.
+
+ :returns: Executable constructor call.
+ :rtype: str
+ """
+ return "AvgStdevMetadata(size={size},avg={avg},stdev={stdev})".format(
+ size=self.size, avg=self.avg, stdev=self.stdev)
diff --git a/resources/tools/presentation/new/jumpavg/AvgStdevMetadataFactory.py b/resources/tools/presentation/new/jumpavg/AvgStdevMetadataFactory.py
new file mode 100644
index 0000000000..d7d0517a57
--- /dev/null
+++ b/resources/tools/presentation/new/jumpavg/AvgStdevMetadataFactory.py
@@ -0,0 +1,49 @@
+# Copyright (c) 2018 Cisco and/or its affiliates.
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at:
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import math
+
+from AvgStdevMetadata import AvgStdevMetadata
+
+
+class AvgStdevMetadataFactory(object):
+ """Class factory which creates avg,stdev metadata from data."""
+
+ @staticmethod
+ def from_data(values):
+ """Return new metadata object fitting the values.
+
+ :param values: Run values to be processed.
+ :type values: Iterable of float or of AvgStdevMetadata
+ :returns: The metadata matching the values.
+ :rtype: AvgStdevMetadata
+ """
+ sum_0 = 0
+ sum_1 = 0.0
+ sum_2 = 0.0
+ for value in values:
+ if isinstance(value, AvgStdevMetadata):
+ sum_0 += value.size
+ sum_1 += value.avg * value.size
+ sum_2 += value.stdev * value.stdev * value.size
+ sum_2 += value.avg * value.avg * value.size
+ else: # The value is assumed to be float.
+ sum_0 += 1
+ sum_1 += value
+ sum_2 += value * value
+ if sum_0 < 1:
+ return AvgStdevMetadata()
+ avg = sum_1 / sum_0
+ stdev = math.sqrt(sum_2 / sum_0 - avg * avg)
+ ret_obj = AvgStdevMetadata(size=sum_0, avg=avg, stdev=stdev)
+ return ret_obj
diff --git a/resources/tools/presentation/new/jumpavg/BitCountingClassifier.py b/resources/tools/presentation/new/jumpavg/BitCountingClassifier.py
new file mode 100644
index 0000000000..69b1d65bb2
--- /dev/null
+++ b/resources/tools/presentation/new/jumpavg/BitCountingClassifier.py
@@ -0,0 +1,63 @@
+# Copyright (c) 2018 Cisco and/or its affiliates.
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at:
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from BitCountingGroup import BitCountingGroup
+from BitCountingGroupList import BitCountingGroupList
+from BitCountingMetadataFactory import BitCountingMetadataFactory
+from ClassifiedMetadataFactory import ClassifiedMetadataFactory
+
+
+class BitCountingClassifier(object):
+
+ @staticmethod
+ def classify(values):
+ """Return the values in groups of optimal bit count.
+
+ TODO: Could we return BitCountingGroupList and let caller process it?
+
+ :param values: Sequence of runs to classify.
+ :type values: Iterable of float or of AvgStdevMetadata
+ :returns: Classified group list.
+ :rtype: list of BitCountingGroup
+ """
+ max_value = BitCountingMetadataFactory.find_max_value(values)
+ factory = BitCountingMetadataFactory(max_value)
+ opened_at = []
+ closed_before = [BitCountingGroupList()]
+ for index, value in enumerate(values):
+ singleton = BitCountingGroup(factory, [value])
+ newly_opened = closed_before[index].with_group_appended(singleton)
+ opened_at.append(newly_opened)
+ record_group_list = newly_opened
+ for previous in range(index):
+ previous_opened_list = opened_at[previous]
+ still_opened = (
+ previous_opened_list.with_value_added_to_last_group(value))
+ opened_at[previous] = still_opened
+ if still_opened.bits < record_group_list.bits:
+ record_group_list = still_opened
+ closed_before.append(record_group_list)
+ partition = closed_before[-1]
+ previous_average = partition[0].metadata.avg
+ for group in partition:
+ if group.metadata.avg == previous_average:
+ group.metadata = ClassifiedMetadataFactory.with_classification(
+ group.metadata, "normal")
+ elif group.metadata.avg < previous_average:
+ group.metadata = ClassifiedMetadataFactory.with_classification(
+ group.metadata, "regression")
+ elif group.metadata.avg > previous_average:
+ group.metadata = ClassifiedMetadataFactory.with_classification(
+ group.metadata, "progression")
+ previous_average = group.metadata.avg
+ return partition.group_list
diff --git a/resources/tools/presentation/new/jumpavg/BitCountingGroup.py b/resources/tools/presentation/new/jumpavg/BitCountingGroup.py
new file mode 100644
index 0000000000..144f5a8780
--- /dev/null
+++ b/resources/tools/presentation/new/jumpavg/BitCountingGroup.py
@@ -0,0 +1,43 @@
+# Copyright (c) 2018 Cisco and/or its affiliates.
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at:
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from RunGroup import RunGroup
+
+
+class BitCountingGroup(RunGroup):
+
+ def __init__(self, metadata_factory, values=[]):
+ """Create the group from metadata factory and values.
+
+ :param metadata_factory: Factory object to create metadata with.
+ :param values: The runs belonging to this group.
+ :type metadata_factory: BitCountingMetadataFactory
+ :type values: Iterable of float or of AvgStdevMetadata
+ """
+ self.metadata_factory = metadata_factory
+ metadata = metadata_factory.from_data(values)
+ super(BitCountingGroup, self).__init__(metadata, values)
+
+ def with_run_added(self, value):
+ """Create and return a new group with one more run that self.
+
+ :param value: The run value to add to the group.
+ :type value: float or od AvgStdevMetadata
+ :returns: New group with the run added.
+ :rtype: BitCountingGroup
+ """
+ values = list(self.values)
+ values.append(value)
+ return BitCountingGroup(self.metadata_factory, values)
+ # TODO: Is there a good way to save some computation
+ # by copy&updating the metadata incrementally?
diff --git a/resources/tools/presentation/new/jumpavg/BitCountingGroupList.py b/resources/tools/presentation/new/jumpavg/BitCountingGroupList.py
new file mode 100644
index 0000000000..7da0656782
--- /dev/null
+++ b/resources/tools/presentation/new/jumpavg/BitCountingGroupList.py
@@ -0,0 +1,82 @@
+# Copyright (c) 2018 Cisco and/or its affiliates.
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at:
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from BitCountingGroup import BitCountingGroup
+from BitCountingMetadataFactory import BitCountingMetadataFactory
+
+
+class BitCountingGroupList(object):
+
+ def __init__(self, group_list=[], bits=None):
+ """Create a group list from given list of groups.
+
+ :param group_list: List of groups to compose this group.
+ :param bits: Bit count if known, else None.
+ :type group_list: list of BitCountingGroup
+ :type bits: float or None
+ """
+ self.group_list = group_list
+ if bits is not None:
+ self.bits = bits
+ return
+ bits = 0.0
+ for group in group_list:
+ bits += group.metadata.bits
+ self.bits = bits
+
+ def __getitem__(self, index):
+ """Return group at the index. This makes self iterable.
+
+ :param index: The position in the array of groups.
+ :type index: int
+ :returns: Group at the position.
+ :rtype: BitCountingGroup
+ """
+ return self.group_list[index]
+
+ def with_group_appended(self, group):
+ """Create and return new group list with given group more than self.
+
+ The group argument object is updated with derivative metadata.
+
+ :param group: Next group to be appended to the group list.
+ :type group: BitCountingGroup
+ :returns: New group list with added group.
+ :rtype: BitCountingGroupList
+ """
+ group_list = list(self.group_list)
+ if group_list:
+ last_group = group_list[-1]
+ factory = BitCountingMetadataFactory(
+ last_group.metadata_factory.max_value, last_group.metadata.avg)
+ group.metadata_factory = factory
+ group.metadata = factory.from_data(group.values)
+ group_list.append(group)
+ bits = self.bits + group.metadata.bits
+ return BitCountingGroupList(group_list, bits)
+
+ def with_value_added_to_last_group(self, value):
+ """Create and return new group list with value added to last group.
+
+ :param value: The run value to add to the last group.
+ :type value: float or od AvgStdevMetadata
+ :returns: New group list with the last group updated.
+ :rtype: BitCountingGroupList
+ """
+ last_group = self.group_list[-1]
+ bits_before = last_group.metadata.bits
+ last_group = last_group.with_run_added(value)
+ group_list = list(self.group_list)
+ group_list[-1] = last_group
+ bits = self.bits - bits_before + last_group.metadata.bits
+ return BitCountingGroupList(group_list, bits)
diff --git a/resources/tools/presentation/new/jumpavg/BitCountingMetadata.py b/resources/tools/presentation/new/jumpavg/BitCountingMetadata.py
new file mode 100644
index 0000000000..67d111985f
--- /dev/null
+++ b/resources/tools/presentation/new/jumpavg/BitCountingMetadata.py
@@ -0,0 +1,102 @@
+# Copyright (c) 2018 Cisco and/or its affiliates.
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at:
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import math
+
+from AvgStdevMetadata import AvgStdevMetadata
+
+
+class BitCountingMetadata(AvgStdevMetadata):
+ """Class for metadata which includes information content."""
+
+ def __init__(self, max_value, size=0, avg=0.0, stdev=0.0, prev_avg=None):
+ """Construct the metadata by computing from the values needed.
+
+ The bit count is not real, as that would depend on numeric precision
+ (number of significant bits in values).
+ The difference is assumed to be constant per value,
+ which is consistent with Gauss distribution
+ (but not with floating point mechanic).
+ The hope is the difference will have
+ no real impact on the classification procedure.
+
+ :param max_value: Maximal expected value.
+ TODO: This might be more optimal,
+ but max-invariant algorithm will be nicer.
+ :param size: Number of values participating in this group.
+ :param avg: Population average of the participating sample values.
+ :param stdev: Population standard deviation of the sample values.
+ :param prev_avg: Population average of the previous group.
+ If None, no previous average is taken into account.
+ If not None, the given previous average is used to discourage
+ consecutive groups with similar averages
+ (opposite triangle distribution is assumed).
+ :type max_value: float
+ :type size: int
+ :type avg: float
+ :type stdev: float
+ :type prev_avg: float or None
+ """
+ super(BitCountingMetadata, self).__init__(size, avg, stdev)
+ self.max_value = max_value
+ self.prev_avg = prev_avg
+ self.bits = 0.0
+ if self.size < 1:
+ return
+ # Length of the sequence must be also counted in bits,
+ # otherwise the message would not be decodable.
+ # Model: probability of k samples is 1/k - 1/(k+1)
+ # == 1/k/(k+1)
+ self.bits += math.log(size * (size + 1), 2)
+ if prev_avg is None:
+ # Avg is considered to be uniformly distributed
+ # from zero to max_value.
+ self.bits += math.log(max_value + 1.0, 2)
+ else:
+ # Opposite triangle distribution with minimum.
+ self.bits += math.log(
+ max_value * (max_value + 1) / (abs(avg - prev_avg) + 1), 2)
+ if self.size < 2:
+ return
+ # Stdev is considered to be uniformly distributed
+ # from zero to max_value. That is quite a bad expectation,
+ # but resilient to negative samples etc.
+ self.bits += math.log(max_value + 1.0, 2)
+ # Now we know the samples lie on sphere in size-1 dimensions.
+ # So it is (size-2)-sphere, with radius^2 == stdev^2 * size.
+ # https://en.wikipedia.org/wiki/N-sphere
+ sphere_area_ln = math.log(2) + math.log(math.pi) * ((size - 1) / 2.0)
+ sphere_area_ln -= math.lgamma((size - 1) / 2.0)
+ sphere_area_ln += math.log(stdev + 1.0) * (size - 2)
+ sphere_area_ln += math.log(size) * ((size - 2) / 2.0)
+ self.bits += sphere_area_ln / math.log(2)
+
+ def __str__(self):
+ """Return string with human readable description of the group.
+
+ :returns: Readable description.
+ :rtype: str
+ """
+ return "size={size} avg={avg} stdev={stdev} bits={bits}".format(
+ size=self.size, avg=self.avg, stdev=self.stdev, bits=self.bits)
+
+ def __repr__(self):
+ """Return string executable as Python constructor call.
+
+ :returns: Executable constructor call.
+ :rtype: str
+ """
+ return ("BitCountingMetadata(max_value={max_value},size={size}," +
+ "avg={avg},stdev={stdev},prev_avg={prev_avg})").format(
+ max_value=self.max_value, size=self.size, avg=self.avg,
+ stdev=self.stdev, prev_avg=self.prev_avg)
diff --git a/resources/tools/presentation/new/jumpavg/BitCountingMetadataFactory.py b/resources/tools/presentation/new/jumpavg/BitCountingMetadataFactory.py
new file mode 100644
index 0000000000..5a7b393b55
--- /dev/null
+++ b/resources/tools/presentation/new/jumpavg/BitCountingMetadataFactory.py
@@ -0,0 +1,80 @@
+# Copyright (c) 2018 Cisco and/or its affiliates.
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at:
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import math
+
+from AvgStdevMetadata import AvgStdevMetadata
+from AvgStdevMetadataFactory import AvgStdevMetadataFactory
+from BitCountingMetadata import BitCountingMetadata
+
+
+class BitCountingMetadataFactory(object):
+ """Class for factory which creates bit counting metadata from data."""
+
+ @staticmethod
+ def find_max_value(values):
+ """Return the max value.
+
+ This is a separate helper method,
+ because the whole set of values is usually larger than in from_data().
+
+ :param values: Run values to be processed.
+ :type values: Iterable of float
+ :returns: 0.0 or the biggest value found.
+ :rtype: float
+ """
+ max_value = 0.0
+ for value in values:
+ if isinstance(value, AvgStdevMetadata):
+ value = value.avg
+ if value > max_value:
+ max_value = value
+ return max_value
+
+ def __init__(self, max_value, prev_avg=None):
+ """Construct the factory instance with given arguments.
+
+ :param max_value: Maximal expected value.
+ :param prev_avg: Population average of the previous group.
+ If None, no previous average is taken into account.
+ If not None, the given previous average is used to discourage
+ consecutive groups with similar averages
+ (opposite triangle distribution is assumed).
+ :type max_value: float
+ :type prev_avg: float or None
+ """
+ self.max_value = max_value
+ self.prev_avg = prev_avg
+
+ def from_avg_stdev_metadata(self, metadata):
+ """Return new metadata object by adding bits to existing metadata.
+
+ :param metadata: Metadata to count bits for.
+ :type metadata: AvgStdevMetadata
+ :returns: The metadata with bits counted.
+ :rtype: BitCountingMetadata
+ """
+ return BitCountingMetadata(
+ max_value=self.max_value, size=metadata.size,
+ avg=metadata.avg, stdev=metadata.stdev, prev_avg=self.prev_avg)
+
+ def from_data(self, values):
+ """Return new metadata object fitting the values.
+
+ :param values: Run values to be processed.
+ :type values: Iterable of float or of AvgStdevMetadata
+ :returns: The metadata matching the values.
+ :rtype: BitCountingMetadata
+ """
+ metadata = AvgStdevMetadataFactory.from_data(values)
+ return self.from_avg_stdev_metadata(metadata)
diff --git a/resources/tools/presentation/new/jumpavg/ClassifiedBitCountingMetadata.py b/resources/tools/presentation/new/jumpavg/ClassifiedBitCountingMetadata.py
new file mode 100644
index 0000000000..9a7277bc3e
--- /dev/null
+++ b/resources/tools/presentation/new/jumpavg/ClassifiedBitCountingMetadata.py
@@ -0,0 +1,68 @@
+# Copyright (c) 2018 Cisco and/or its affiliates.
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at:
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from BitCountingMetadata import BitCountingMetadata
+
+
+class ClassifiedBitCountingMetadata(BitCountingMetadata):
+ """Class for metadata which includes classification."""
+
+ def __init__(
+ self, max_value, size=0, avg=0.0, stdev=0.0, prev_avg=None,
+ classification=None):
+ """Delegate to ancestor constructors and set classification.
+
+ :param max_value: Maximal expected value.
+ :param size: Number of values participating in this group.
+ :param avg: Population average of the participating sample values.
+ :param stdev: Population standard deviation of the sample values.
+ :param prev_avg: Population average of the previous group.
+ If None, no previous average is taken into account.
+ If not None, the given previous average is used to discourage
+ consecutive groups with similar averages
+ (opposite triangle distribution is assumed).
+ :param classification: Arbitrary object classifying this group.
+ :type max_value: float
+ :type size: int
+ :type avg: float
+ :type stdev: float
+ :type prev_avg: float
+ :type classification: object
+ """
+ super(ClassifiedBitCountingMetadata, self).__init__(
+ max_value, size, avg, stdev, prev_avg)
+ self.classification = classification
+
+ def __str__(self):
+ """Return string with human readable description of the group.
+
+ :returns: Readable description.
+ :rtype: str
+ """
+ # str(super(...)) describes the proxy, not the proxied object.
+ super_str = super(ClassifiedBitCountingMetadata, self).__str__()
+ return super_str + " classification={classification}".format(
+ classification=self.classification)
+
+ def __repr__(self):
+ """Return string executable as Python constructor call.
+
+ :returns: Executable constructor call.
+ :rtype: str
+ """
+ return ("ClassifiedBitCountingMetadata(max_value={max_value}," +
+ "size={size},avg={avg},stdev={stdev},prev_avg={prev_avg}," +
+ "classification={cls})").format(
+ max_value=self.max_value, size=self.size, avg=self.avg,
+ stdev=self.stdev, prev_avg=self.prev_avg,
+ cls=self.classification)
diff --git a/resources/tools/presentation/new/jumpavg/ClassifiedMetadataFactory.py b/resources/tools/presentation/new/jumpavg/ClassifiedMetadataFactory.py
new file mode 100644
index 0000000000..39b157f26b
--- /dev/null
+++ b/resources/tools/presentation/new/jumpavg/ClassifiedMetadataFactory.py
@@ -0,0 +1,42 @@
+# Copyright (c) 2018 Cisco and/or its affiliates.
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at:
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import math
+
+from ClassifiedBitCountingMetadata import ClassifiedBitCountingMetadata
+
+
+class ClassifiedMetadataFactory(object):
+ """Class for factory which adds classification to bit counting metadata."""
+
+ @staticmethod
+ def with_classification(metadata, classification):
+ """Return new metadata object with added classification.
+
+ TODO: Is there a way to add classification to any metadata,
+ without messing up constructors and __repr__()?
+
+ FIXME: Factories take raw resources. Find a name for the thing
+ which takes semi-finished products. Transformer?
+
+ :param metadata: Existing metadata without classification.
+ :param classification: Arbitrary object classifying this group.
+ :type metadata: BitCountingMetadata
+ :type classification: object
+ :returns: The metadata with added classification.
+ :rtype: ClassifiedBitCountingMetadata
+ """
+ return ClassifiedBitCountingMetadata(
+ max_value=metadata.max_value, size=metadata.size, avg=metadata.avg,
+ stdev=metadata.stdev, prev_avg=metadata.prev_avg,
+ classification=classification)
diff --git a/resources/tools/presentation/new/jumpavg/RunGroup.py b/resources/tools/presentation/new/jumpavg/RunGroup.py
new file mode 100644
index 0000000000..808e02b792
--- /dev/null
+++ b/resources/tools/presentation/new/jumpavg/RunGroup.py
@@ -0,0 +1,26 @@
+# Copyright (c) 2018 Cisco and/or its affiliates.
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at:
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+
+class RunGroup(object):
+
+ def __init__(self, metadata, values):
+ """Create the group from metadata and values.
+
+ :param metadata: Metadata object to associate with the group.
+ :param values: The runs belonging to this group.
+ :type metadata: AbstractGroupMetadata
+ :type values: Iterable of float or od AvgStdevMetadata
+ """
+ self.metadata = metadata
+ self.values = values
diff --git a/resources/tools/presentation/new/jumpavg/__init__.py b/resources/tools/presentation/new/jumpavg/__init__.py
new file mode 100644
index 0000000000..f9fc83a1fe
--- /dev/null
+++ b/resources/tools/presentation/new/jumpavg/__init__.py
@@ -0,0 +1,16 @@
+# Copyright (c) 2018 Cisco and/or its affiliates.
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at:
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+"""
+__init__ file for directory resources/tools/presentation/jumpavg
+"""