diff options
author | Tibor Frank <tifrank@cisco.com> | 2018-05-28 09:02:35 +0200 |
---|---|---|
committer | Tibor Frank <tifrank@cisco.com> | 2018-05-29 08:48:46 +0200 |
commit | f31dbcd6553ca6e7436736a5bc3aeec8fe18cad1 (patch) | |
tree | 93ab6520d8aa05595dda06f4bf885a21cc2d426e /resources/tools/presentation/utils.py | |
parent | 6f5de201aadfbb31419c05dfae6495107a745899 (diff) |
CSIT-1106: Unify the anomaly detection (plots, dashboard)
Change-Id: I27aaa5482224d1ff518aceb879cd889f2fc8d0f5
Signed-off-by: Tibor Frank <tifrank@cisco.com>
Diffstat (limited to 'resources/tools/presentation/utils.py')
-rw-r--r-- | resources/tools/presentation/utils.py | 42 |
1 files changed, 42 insertions, 0 deletions
diff --git a/resources/tools/presentation/utils.py b/resources/tools/presentation/utils.py index f32019dc2e..0a9d985a88 100644 --- a/resources/tools/presentation/utils.py +++ b/resources/tools/presentation/utils.py @@ -274,6 +274,48 @@ def archive_input_data(spec): logging.info(" Done.") +def classify_anomalies(data, window): + """Evaluates if the sample value is an outlier, regression, normal or + progression compared to the previous data within the window. + We use the intervals defined as: + - regress: less than trimmed moving median - 3 * stdev + - normal: between trimmed moving median - 3 * stdev and median + 3 * stdev + - progress: more than trimmed moving median + 3 * stdev + where stdev is trimmed moving standard deviation. + + :param data: Full data set with the outliers replaced by nan. + :param window: Window size used to calculate moving average and moving + stdev. + :type data: pandas.Series + :type window: int + :returns: Evaluated results. + :rtype: list + """ + + if data.size < 3: + return None + + win_size = data.size if data.size < window else window + tmm = data.rolling(window=win_size, min_periods=2).median() + tmstd = data.rolling(window=win_size, min_periods=2).std() + + classification = ["normal", ] + first = True + for build, value in data.iteritems(): + if first: + first = False + continue + if np.isnan(value) or np.isnan(tmm[build]) or np.isnan(tmstd[build]): + classification.append("outlier") + elif value < (tmm[build] - 3 * tmstd[build]): + classification.append("regression") + elif value > (tmm[build] + 3 * tmstd[build]): + classification.append("progression") + else: + classification.append("normal") + return classification + + class Worker(multiprocessing.Process): """Worker class used to process tasks in separate parallel processes. """ |