diff options
author | Viliam Luc <vluc@cisco.com> | 2021-12-03 14:54:25 +0100 |
---|---|---|
committer | Tibor Frank <tifrank@cisco.com> | 2021-12-13 10:59:18 +0000 |
commit | 575b935029aa496629f138d0e5f756921b64d1e6 (patch) | |
tree | eadc1e51c97b754f968bcc9c0fcdf85e7c750bb7 /resources/tools/presentation | |
parent | e82ebbd96e2ba73276e2f1b6d7f9c2d8a9442c3f (diff) |
trending: regression and progression add info to email
adding trend in Mpps, runs for trend in #, trend change in %
+ dashboard - removed Short-Term change and added # of runs for trend
Signed-off-by: Viliam Luc <vluc@cisco.com>
Change-Id: Ib02d2a2224fc52b79832560241b0530aa2eaaf77
Diffstat (limited to 'resources/tools/presentation')
-rw-r--r-- | resources/tools/presentation/generator_cpta.py | 44 | ||||
-rw-r--r-- | resources/tools/presentation/generator_tables.py | 26 |
2 files changed, 55 insertions, 15 deletions
diff --git a/resources/tools/presentation/generator_cpta.py b/resources/tools/presentation/generator_cpta.py index 0320b9eec1..0bef38d82d 100644 --- a/resources/tools/presentation/generator_cpta.py +++ b/resources/tools/presentation/generator_cpta.py @@ -13,7 +13,6 @@ """Generation of Continuous Performance Trending and Analysis. """ - import re import logging import csv @@ -21,6 +20,7 @@ import csv from collections import OrderedDict from datetime import datetime from copy import deepcopy +from os import listdir import prettytable import plotly.offline as ploff @@ -838,22 +838,60 @@ def _generate_all_charts(spec, input_data): # Evaluate result: if anomaly_classifications: + legend_str = (f"Legend:\n[ Last trend in Mpps/Mcps | number of runs for" + f" last trend | ") result = u"PASS" for job_name, job_data in anomaly_classifications.items(): + data = [] + tb = u"-".join(job_name.split(u"-")[-2:]) + for file in listdir(f"{spec.cpta[u'output-file']}"): + if tb in file and u"performance-trending-dashboard" in \ + file and u"txt" in file: + file_to_read = f"{spec.cpta[u'output-file']}/{file}" + with open(f"{file_to_read}", u"rt") as input: + data = data + input.readlines() file_name = \ f"{spec.cpta[u'output-file']}/regressions-{job_name}.txt" with open(file_name, u'w') as txt_file: for test_name, classification in job_data.items(): if classification == u"regression": - txt_file.write(test_name + u'\n') + tst = test_name.split(" ")[1].split(".")[1:] + nic = tst[0].split("-")[0] + tst_name = f"{nic}-{tst[1]}" + + for line in data: + if tst_name in line: + line = line.replace(" ", "") + trend = line.split("|")[2] + number = line.split("|")[3] + ltc = line.split("|")[4] + txt_file.write(f"{tst_name} [ {trend}M | " + f"#{number} | {ltc}% ]\n") + if classification in (u"regression", u"outlier"): result = u"FAIL" + + txt_file.write(f"{legend_str}regression in percentage ]") + file_name = \ f"{spec.cpta[u'output-file']}/progressions-{job_name}.txt" with open(file_name, u'w') as txt_file: for test_name, classification in job_data.items(): if classification == u"progression": - txt_file.write(test_name + u'\n') + tst = test_name.split(" ")[1].split(".")[1:] + nic = tst[0].split("-")[0] + tst_name = f"{nic}-{tst[1]}" + + for line in data: + if tst_name in line: + line = line.replace(" ", "") + trend = line.split("|")[2] + number = line.split("|")[3] + ltc = line.split("|")[4] + txt_file.write(f"{tst_name} [ {trend}M | " + f"#{number} | {ltc}% ]\n") + + txt_file.write(f"{legend_str}progression in percentage ]") else: result = u"FAIL" diff --git a/resources/tools/presentation/generator_tables.py b/resources/tools/presentation/generator_tables.py index 917f0412f5..0b063b1067 100644 --- a/resources/tools/presentation/generator_tables.py +++ b/resources/tools/presentation/generator_tables.py @@ -972,8 +972,8 @@ def table_perf_trending_dash(table, input_data): header = [ u"Test Case", u"Trend [Mpps]", - u"Short-Term Change [%]", - u"Long-Term Change [%]", + u"Number of runs [#]", + u"Trend Change [%]", u"Regressions [#]", u"Progressions [#]" ] @@ -1034,6 +1034,13 @@ def table_perf_trending_dash(table, input_data): last_avg = avgs[-1] avg_week_ago = avgs[max(-win_size, -len(avgs))] + nr_of_last_avgs = 0; + for x in reversed(avgs): + if x == last_avg: + nr_of_last_avgs += 1 + else: + break + if isnan(last_avg) or isnan(avg_week_ago) or avg_week_ago == 0.0: rel_change_last = nan else: @@ -1055,28 +1062,23 @@ def table_perf_trending_dash(table, input_data): tbl_lst.append( [tbl_dict[tst_name][u"name"], round(last_avg / 1e6, 2), - rel_change_last, + nr_of_last_avgs, rel_change_long, classification_lst[-win_size+1:].count(u"regression"), classification_lst[-win_size+1:].count(u"progression")]) tbl_lst.sort(key=lambda rel: rel[0]) - tbl_lst.sort(key=lambda rel: rel[3]) tbl_lst.sort(key=lambda rel: rel[2]) - - tbl_sorted = list() - for nrr in range(table[u"window"], -1, -1): - tbl_reg = [item for item in tbl_lst if item[4] == nrr] - for nrp in range(table[u"window"], -1, -1): - tbl_out = [item for item in tbl_reg if item[5] == nrp] - tbl_sorted.extend(tbl_out) + tbl_lst.sort(key=lambda rel: rel[3]) + tbl_lst.sort(key=lambda rel: rel[5], reverse=True) + tbl_lst.sort(key=lambda rel: rel[4], reverse=True) file_name = f"{table[u'output-file']}{table[u'output-file-ext']}" logging.info(f" Writing file: {file_name}") with open(file_name, u"wt") as file_handler: file_handler.write(header_str) - for test in tbl_sorted: + for test in tbl_lst: file_handler.write(u",".join([str(item) for item in test]) + u'\n') logging.info(f" Writing file: {table[u'output-file']}.txt") |