aboutsummaryrefslogtreecommitdiffstats
path: root/resources/tools/presentation_new/generator_plots.py
diff options
context:
space:
mode:
authorVratko Polak <vrpolak@cisco.com>2019-07-18 12:09:10 +0200
committerVratko Polak <vrpolak@cisco.com>2019-07-18 12:09:10 +0200
commit229ba1d73fea70abcb7455520211b947eb89709b (patch)
tree797da6f706a6ad13ca054cba437b5752eccb746a /resources/tools/presentation_new/generator_plots.py
parent7b545012b775275302ce3e2188a1ce480a652fe3 (diff)
Trending: Delete presentation_new
It is outdated an unmaintained. Change-Id: I9b48391906a233cbdf736a3b2d12da80d3a2d77d Signed-off-by: Vratko Polak <vrpolak@cisco.com>
Diffstat (limited to 'resources/tools/presentation_new/generator_plots.py')
-rw-r--r--resources/tools/presentation_new/generator_plots.py843
1 files changed, 0 insertions, 843 deletions
diff --git a/resources/tools/presentation_new/generator_plots.py b/resources/tools/presentation_new/generator_plots.py
deleted file mode 100644
index 32f146bca8..0000000000
--- a/resources/tools/presentation_new/generator_plots.py
+++ /dev/null
@@ -1,843 +0,0 @@
-# Copyright (c) 2018 Cisco and/or its affiliates.
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at:
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-"""Algorithms to generate plots.
-"""
-
-
-import logging
-import pandas as pd
-import plotly.offline as ploff
-import plotly.graph_objs as plgo
-
-from plotly.exceptions import PlotlyError
-from collections import OrderedDict
-from copy import deepcopy
-
-from utils import mean
-
-
-COLORS = ["SkyBlue", "Olive", "Purple", "Coral", "Indigo", "Pink",
- "Chocolate", "Brown", "Magenta", "Cyan", "Orange", "Black",
- "Violet", "Blue", "Yellow", "BurlyWood", "CadetBlue", "Crimson",
- "DarkBlue", "DarkCyan", "DarkGreen", "Green", "GoldenRod",
- "LightGreen", "LightSeaGreen", "LightSkyBlue", "Maroon",
- "MediumSeaGreen", "SeaGreen", "LightSlateGrey"]
-
-
-def generate_plots(spec, data):
- """Generate all plots specified in the specification file.
-
- :param spec: Specification read from the specification file.
- :param data: Data to process.
- :type spec: Specification
- :type data: InputData
- """
-
- logging.info("Generating the plots ...")
- for index, plot in enumerate(spec.plots):
- try:
- logging.info(" Plot nr {0}: {1}".format(index + 1,
- plot.get("title", "")))
- plot["limits"] = spec.configuration["limits"]
- eval(plot["algorithm"])(plot, data)
- logging.info(" Done.")
- except NameError as err:
- logging.error("Probably algorithm '{alg}' is not defined: {err}".
- format(alg=plot["algorithm"], err=repr(err)))
- logging.info("Done.")
-
-
-def plot_performance_box(plot, input_data):
- """Generate the plot(s) with algorithm: plot_performance_box
- specified in the specification file.
-
- :param plot: Plot to generate.
- :param input_data: Data to process.
- :type plot: pandas.Series
- :type input_data: InputData
- """
-
- # Transform the data
- plot_title = plot.get("title", "")
- logging.info(" Creating the data set for the {0} '{1}'.".
- format(plot.get("type", ""), plot_title))
- data = input_data.filter_data(plot)
- if data is None:
- logging.error("No data.")
- return
-
- # Prepare the data for the plot
- y_vals = dict()
- y_tags = dict()
- for job in data:
- for build in job:
- for test in build:
- if y_vals.get(test["parent"], None) is None:
- y_vals[test["parent"]] = list()
- y_tags[test["parent"]] = test.get("tags", None)
- try:
- if test["type"] in ("NDRPDR", ):
- if "-pdr" in plot_title.lower():
- y_vals[test["parent"]].\
- append(test["throughput"]["PDR"]["LOWER"])
- elif "-ndr" in plot_title.lower():
- y_vals[test["parent"]]. \
- append(test["throughput"]["NDR"]["LOWER"])
- else:
- continue
- else:
- continue
- except (KeyError, TypeError):
- y_vals[test["parent"]].append(None)
-
- # Sort the tests
- order = plot.get("sort", None)
- if order and y_tags:
- y_sorted = OrderedDict()
- y_tags_l = {s: [t.lower() for t in ts] for s, ts in y_tags.items()}
- for tag in order:
- logging.debug(tag)
- for suite, tags in y_tags_l.items():
- if "not " in tag:
- tag = tag.split(" ")[-1]
- if tag.lower() in tags:
- continue
- else:
- if tag.lower() not in tags:
- continue
- try:
- y_sorted[suite] = y_vals.pop(suite)
- y_tags_l.pop(suite)
- logging.debug(suite)
- except KeyError as err:
- logging.error("Not found: {0}".format(repr(err)))
- finally:
- break
- else:
- y_sorted = y_vals
-
- # Add None to the lists with missing data
- max_len = 0
- nr_of_samples = list()
- for val in y_sorted.values():
- if len(val) > max_len:
- max_len = len(val)
- nr_of_samples.append(len(val))
- for key, val in y_sorted.items():
- if len(val) < max_len:
- val.extend([None for _ in range(max_len - len(val))])
-
- # Add plot traces
- traces = list()
- df = pd.DataFrame(y_sorted)
- df.head()
- y_max = list()
- for i, col in enumerate(df.columns):
- name = "{nr}. ({samples:02d} run{plural}) {name}".\
- format(nr=(i + 1),
- samples=nr_of_samples[i],
- plural='s' if nr_of_samples[i] > 1 else '',
- name=col.lower().replace('-ndrpdr', ''))
- if len(name) > 50:
- name_lst = name.split('-')
- name = ""
- split_name = True
- for segment in name_lst:
- if (len(name) + len(segment) + 1) > 50 and split_name:
- name += "<br> "
- split_name = False
- name += segment + '-'
- name = name[:-1]
-
- logging.debug(name)
- traces.append(plgo.Box(x=[str(i + 1) + '.'] * len(df[col]),
- y=[y / 1000000 if y else None for y in df[col]],
- name=name,
- **plot["traces"]))
- try:
- val_max = max(df[col])
- except ValueError as err:
- logging.error(repr(err))
- continue
- if val_max:
- y_max.append(int(val_max / 1000000) + 1)
-
- try:
- # Create plot
- layout = deepcopy(plot["layout"])
- if layout.get("title", None):
- layout["title"] = "<b>Packet Throughput:</b> {0}". \
- format(layout["title"])
- if y_max:
- layout["yaxis"]["range"] = [0, max(y_max)]
- plpl = plgo.Figure(data=traces, layout=layout)
-
- # Export Plot
- logging.info(" Writing file '{0}{1}'.".
- format(plot["output-file"], plot["output-file-type"]))
- ploff.plot(plpl, show_link=False, auto_open=False,
- filename='{0}{1}'.format(plot["output-file"],
- plot["output-file-type"]))
- except PlotlyError as err:
- logging.error(" Finished with error: {}".
- format(repr(err).replace("\n", " ")))
- return
-
-
-def plot_latency_error_bars(plot, input_data):
- """Generate the plot(s) with algorithm: plot_latency_error_bars
- specified in the specification file.
-
- :param plot: Plot to generate.
- :param input_data: Data to process.
- :type plot: pandas.Series
- :type input_data: InputData
- """
-
- # Transform the data
- plot_title = plot.get("title", "")
- logging.info(" Creating the data set for the {0} '{1}'.".
- format(plot.get("type", ""), plot_title))
- data = input_data.filter_data(plot)
- if data is None:
- logging.error("No data.")
- return
-
- # Prepare the data for the plot
- y_tmp_vals = dict()
- y_tags = dict()
- for job in data:
- for build in job:
- for test in build:
- try:
- logging.debug("test['latency']: {0}\n".
- format(test["latency"]))
- except ValueError as err:
- logging.warning(repr(err))
- if y_tmp_vals.get(test["parent"], None) is None:
- y_tmp_vals[test["parent"]] = [
- list(), # direction1, min
- list(), # direction1, avg
- list(), # direction1, max
- list(), # direction2, min
- list(), # direction2, avg
- list() # direction2, max
- ]
- y_tags[test["parent"]] = test.get("tags", None)
- try:
- if test["type"] in ("NDRPDR", ):
- if "-pdr" in plot_title.lower():
- ttype = "PDR"
- elif "-ndr" in plot_title.lower():
- ttype = "NDR"
- else:
- logging.warning("Invalid test type: {0}".
- format(test["type"]))
- continue
- y_tmp_vals[test["parent"]][0].append(
- test["latency"][ttype]["direction1"]["min"])
- y_tmp_vals[test["parent"]][1].append(
- test["latency"][ttype]["direction1"]["avg"])
- y_tmp_vals[test["parent"]][2].append(
- test["latency"][ttype]["direction1"]["max"])
- y_tmp_vals[test["parent"]][3].append(
- test["latency"][ttype]["direction2"]["min"])
- y_tmp_vals[test["parent"]][4].append(
- test["latency"][ttype]["direction2"]["avg"])
- y_tmp_vals[test["parent"]][5].append(
- test["latency"][ttype]["direction2"]["max"])
- else:
- logging.warning("Invalid test type: {0}".
- format(test["type"]))
- continue
- except (KeyError, TypeError) as err:
- logging.warning(repr(err))
- logging.debug("y_tmp_vals: {0}\n".format(y_tmp_vals))
-
- # Sort the tests
- order = plot.get("sort", None)
- if order and y_tags:
- y_sorted = OrderedDict()
- y_tags_l = {s: [t.lower() for t in ts] for s, ts in y_tags.items()}
- for tag in order:
- logging.debug(tag)
- for suite, tags in y_tags_l.items():
- if "not " in tag:
- tag = tag.split(" ")[-1]
- if tag.lower() in tags:
- continue
- else:
- if tag.lower() not in tags:
- continue
- try:
- y_sorted[suite] = y_tmp_vals.pop(suite)
- y_tags_l.pop(suite)
- logging.debug(suite)
- except KeyError as err:
- logging.error("Not found: {0}".format(repr(err)))
- finally:
- break
- else:
- y_sorted = y_tmp_vals
-
- logging.debug("y_sorted: {0}\n".format(y_sorted))
- x_vals = list()
- y_vals = list()
- y_mins = list()
- y_maxs = list()
- nr_of_samples = list()
- for key, val in y_sorted.items():
- name = "-".join(key.split("-")[1:-1])
- if len(name) > 50:
- name_lst = name.split('-')
- name = ""
- split_name = True
- for segment in name_lst:
- if (len(name) + len(segment) + 1) > 50 and split_name:
- name += "<br>"
- split_name = False
- name += segment + '-'
- name = name[:-1]
- x_vals.append(name) # dir 1
- y_vals.append(mean(val[1]) if val[1] else None)
- y_mins.append(mean(val[0]) if val[0] else None)
- y_maxs.append(mean(val[2]) if val[2] else None)
- nr_of_samples.append(len(val[1]) if val[1] else 0)
- x_vals.append(name) # dir 2
- y_vals.append(mean(val[4]) if val[4] else None)
- y_mins.append(mean(val[3]) if val[3] else None)
- y_maxs.append(mean(val[5]) if val[5] else None)
- nr_of_samples.append(len(val[3]) if val[3] else 0)
-
- logging.debug("x_vals :{0}\n".format(x_vals))
- logging.debug("y_vals :{0}\n".format(y_vals))
- logging.debug("y_mins :{0}\n".format(y_mins))
- logging.debug("y_maxs :{0}\n".format(y_maxs))
- logging.debug("nr_of_samples :{0}\n".format(nr_of_samples))
- traces = list()
- annotations = list()
-
- for idx in range(len(x_vals)):
- if not bool(int(idx % 2)):
- direction = "West-East"
- else:
- direction = "East-West"
- hovertext = ("No. of Runs: {nr}<br>"
- "Test: {test}<br>"
- "Direction: {dir}<br>".format(test=x_vals[idx],
- dir=direction,
- nr=nr_of_samples[idx]))
- if isinstance(y_maxs[idx], float):
- hovertext += "Max: {max:.2f}uSec<br>".format(max=y_maxs[idx])
- if isinstance(y_vals[idx], float):
- hovertext += "Mean: {avg:.2f}uSec<br>".format(avg=y_vals[idx])
- if isinstance(y_mins[idx], float):
- hovertext += "Min: {min:.2f}uSec".format(min=y_mins[idx])
-
- if isinstance(y_maxs[idx], float) and isinstance(y_vals[idx], float):
- array = [y_maxs[idx] - y_vals[idx], ]
- else:
- array = [None, ]
- if isinstance(y_mins[idx], float) and isinstance(y_vals[idx], float):
- arrayminus = [y_vals[idx] - y_mins[idx], ]
- else:
- arrayminus = [None, ]
- logging.debug("y_vals[{1}] :{0}\n".format(y_vals[idx], idx))
- logging.debug("array :{0}\n".format(array))
- logging.debug("arrayminus :{0}\n".format(arrayminus))
- traces.append(plgo.Scatter(
- x=[idx, ],
- y=[y_vals[idx], ],
- name=x_vals[idx],
- legendgroup=x_vals[idx],
- showlegend=bool(int(idx % 2)),
- mode="markers",
- error_y=dict(
- type='data',
- symmetric=False,
- array=array,
- arrayminus=arrayminus,
- color=COLORS[int(idx / 2)]
- ),
- marker=dict(
- size=10,
- color=COLORS[int(idx / 2)],
- ),
- text=hovertext,
- hoverinfo="text",
- ))
- annotations.append(dict(
- x=idx,
- y=0,
- xref="x",
- yref="y",
- xanchor="center",
- yanchor="top",
- text="E-W" if bool(int(idx % 2)) else "W-E",
- font=dict(
- size=16,
- ),
- align="center",
- showarrow=False
- ))
-
- try:
- # Create plot
- logging.info(" Writing file '{0}{1}'.".
- format(plot["output-file"], plot["output-file-type"]))
- layout = deepcopy(plot["layout"])
- if layout.get("title", None):
- layout["title"] = "<b>Packet Latency:</b> {0}".\
- format(layout["title"])
- layout["annotations"] = annotations
- plpl = plgo.Figure(data=traces, layout=layout)
-
- # Export Plot
- ploff.plot(plpl,
- show_link=False, auto_open=False,
- filename='{0}{1}'.format(plot["output-file"],
- plot["output-file-type"]))
- except PlotlyError as err:
- logging.error(" Finished with error: {}".
- format(str(err).replace("\n", " ")))
- return
-
-
-def plot_throughput_speedup_analysis(plot, input_data):
- """Generate the plot(s) with algorithm:
- plot_throughput_speedup_analysis
- specified in the specification file.
-
- :param plot: Plot to generate.
- :param input_data: Data to process.
- :type plot: pandas.Series
- :type input_data: InputData
- """
-
- # Transform the data
- plot_title = plot.get("title", "")
- logging.info(" Creating the data set for the {0} '{1}'.".
- format(plot.get("type", ""), plot_title))
- data = input_data.filter_data(plot)
- if data is None:
- logging.error("No data.")
- return
-
- y_vals = dict()
- y_tags = dict()
- for job in data:
- for build in job:
- for test in build:
- if y_vals.get(test["parent"], None) is None:
- y_vals[test["parent"]] = {"1": list(),
- "2": list(),
- "4": list()}
- y_tags[test["parent"]] = test.get("tags", None)
- try:
- if test["type"] in ("NDRPDR",):
- if "-pdr" in plot_title.lower():
- ttype = "PDR"
- elif "-ndr" in plot_title.lower():
- ttype = "NDR"
- else:
- continue
- if "1C" in test["tags"]:
- y_vals[test["parent"]]["1"]. \
- append(test["throughput"][ttype]["LOWER"])
- elif "2C" in test["tags"]:
- y_vals[test["parent"]]["2"]. \
- append(test["throughput"][ttype]["LOWER"])
- elif "4C" in test["tags"]:
- y_vals[test["parent"]]["4"]. \
- append(test["throughput"][ttype]["LOWER"])
- except (KeyError, TypeError):
- pass
-
- if not y_vals:
- logging.warning("No data for the plot '{}'".
- format(plot.get("title", "")))
- return
-
- y_1c_max = dict()
- for test_name, test_vals in y_vals.items():
- for key, test_val in test_vals.items():
- if test_val:
- avg_val = sum(test_val) / len(test_val)
- y_vals[test_name][key] = (avg_val, len(test_val))
- ideal = avg_val / (int(key) * 1000000.0)
- if test_name not in y_1c_max or ideal > y_1c_max[test_name]:
- y_1c_max[test_name] = ideal
-
- vals = dict()
- y_max = list()
- nic_limit = 0
- lnk_limit = 0
- pci_limit = plot["limits"]["pci"]["pci-g3-x8"]
- for test_name, test_vals in y_vals.items():
- try:
- if test_vals["1"][1]:
- name = "-".join(test_name.split('-')[1:-1])
- if len(name) > 50:
- name_lst = name.split('-')
- name = ""
- split_name = True
- for segment in name_lst:
- if (len(name) + len(segment) + 1) > 50 and split_name:
- name += "<br>"
- split_name = False
- name += segment + '-'
- name = name[:-1]
-
- vals[name] = dict()
- y_val_1 = test_vals["1"][0] / 1000000.0
- y_val_2 = test_vals["2"][0] / 1000000.0 if test_vals["2"][0] \
- else None
- y_val_4 = test_vals["4"][0] / 1000000.0 if test_vals["4"][0] \
- else None
-
- vals[name]["val"] = [y_val_1, y_val_2, y_val_4]
- vals[name]["rel"] = [1.0, None, None]
- vals[name]["ideal"] = [y_1c_max[test_name],
- y_1c_max[test_name] * 2,
- y_1c_max[test_name] * 4]
- vals[name]["diff"] = [(y_val_1 - y_1c_max[test_name]) * 100 /
- y_val_1, None, None]
- vals[name]["count"] = [test_vals["1"][1],
- test_vals["2"][1],
- test_vals["4"][1]]
-
- try:
- val_max = max(max(vals[name]["val"], vals[name]["ideal"]))
- except ValueError as err:
- logging.error(err)
- continue
- if val_max:
- y_max.append(int((val_max / 10) + 1) * 10)
-
- if y_val_2:
- vals[name]["rel"][1] = round(y_val_2 / y_val_1, 2)
- vals[name]["diff"][1] = \
- (y_val_2 - vals[name]["ideal"][1]) * 100 / y_val_2
- if y_val_4:
- vals[name]["rel"][2] = round(y_val_4 / y_val_1, 2)
- vals[name]["diff"][2] = \
- (y_val_4 - vals[name]["ideal"][2]) * 100 / y_val_4
- except IndexError as err:
- logging.warning("No data for '{0}'".format(test_name))
- logging.warning(repr(err))
-
- # Limits:
- if "x520" in test_name:
- limit = plot["limits"]["nic"]["x520"]
- elif "x710" in test_name:
- limit = plot["limits"]["nic"]["x710"]
- elif "xxv710" in test_name:
- limit = plot["limits"]["nic"]["xxv710"]
- elif "xl710" in test_name:
- limit = plot["limits"]["nic"]["xl710"]
- elif "x553" in test_name:
- limit = plot["limits"]["nic"]["x553"]
- else:
- limit = 0
- if limit > nic_limit:
- nic_limit = limit
-
- mul = 2 if "ge2p" in test_name else 1
- if "10ge" in test_name:
- limit = plot["limits"]["link"]["10ge"] * mul
- elif "25ge" in test_name:
- limit = plot["limits"]["link"]["25ge"] * mul
- elif "40ge" in test_name:
- limit = plot["limits"]["link"]["40ge"] * mul
- elif "100ge" in test_name:
- limit = plot["limits"]["link"]["100ge"] * mul
- else:
- limit = 0
- if limit > lnk_limit:
- lnk_limit = limit
-
- # Sort the tests
- order = plot.get("sort", None)
- if order and y_tags:
- y_sorted = OrderedDict()
- y_tags_l = {s: [t.lower() for t in ts] for s, ts in y_tags.items()}
- for tag in order:
- for test, tags in y_tags_l.items():
- if tag.lower() in tags:
- name = "-".join(test.split('-')[1:-1])
- try:
- y_sorted[name] = vals.pop(name)
- y_tags_l.pop(test)
- except KeyError as err:
- logging.error("Not found: {0}".format(err))
- finally:
- break
- else:
- y_sorted = vals
-
- traces = list()
- annotations = list()
- x_vals = [1, 2, 4]
-
- # Limits:
- try:
- threshold = 1.1 * max(y_max) # 10%
- except ValueError as err:
- logging.error(err)
- return
- nic_limit /= 1000000.0
- if nic_limit < threshold:
- traces.append(plgo.Scatter(
- x=x_vals,
- y=[nic_limit, ] * len(x_vals),
- name="NIC: {0:.2f}Mpps".format(nic_limit),
- showlegend=False,
- mode="lines",
- line=dict(
- dash="dot",
- color=COLORS[-1],
- width=1),
- hoverinfo="none"
- ))
- annotations.append(dict(
- x=1,
- y=nic_limit,
- xref="x",
- yref="y",
- xanchor="left",
- yanchor="bottom",
- text="NIC: {0:.2f}Mpps".format(nic_limit),
- font=dict(
- size=14,
- color=COLORS[-1],
- ),
- align="left",
- showarrow=False
- ))
- y_max.append(int((nic_limit / 10) + 1) * 10)
-
- lnk_limit /= 1000000.0
- if lnk_limit < threshold:
- traces.append(plgo.Scatter(
- x=x_vals,
- y=[lnk_limit, ] * len(x_vals),
- name="Link: {0:.2f}Mpps".format(lnk_limit),
- showlegend=False,
- mode="lines",
- line=dict(
- dash="dot",
- color=COLORS[-2],
- width=1),
- hoverinfo="none"
- ))
- annotations.append(dict(
- x=1,
- y=lnk_limit,
- xref="x",
- yref="y",
- xanchor="left",
- yanchor="bottom",
- text="Link: {0:.2f}Mpps".format(lnk_limit),
- font=dict(
- size=14,
- color=COLORS[-2],
- ),
- align="left",
- showarrow=False
- ))
- y_max.append(int((lnk_limit / 10) + 1) * 10)
-
- pci_limit /= 1000000.0
- if pci_limit < threshold:
- traces.append(plgo.Scatter(
- x=x_vals,
- y=[pci_limit, ] * len(x_vals),
- name="PCIe: {0:.2f}Mpps".format(pci_limit),
- showlegend=False,
- mode="lines",
- line=dict(
- dash="dot",
- color=COLORS[-3],
- width=1),
- hoverinfo="none"
- ))
- annotations.append(dict(
- x=1,
- y=pci_limit,
- xref="x",
- yref="y",
- xanchor="left",
- yanchor="bottom",
- text="PCIe: {0:.2f}Mpps".format(pci_limit),
- font=dict(
- size=14,
- color=COLORS[-3],
- ),
- align="left",
- showarrow=False
- ))
- y_max.append(int((pci_limit / 10) + 1) * 10)
-
- # Perfect and measured:
- cidx = 0
- for name, val in y_sorted.iteritems():
- hovertext = list()
- try:
- for idx in range(len(val["val"])):
- htext = ""
- if isinstance(val["val"][idx], float):
- htext += "No. of Runs: {1}<br>" \
- "Mean: {0:.2f}Mpps<br>".format(val["val"][idx],
- val["count"][idx])
- if isinstance(val["diff"][idx], float):
- htext += "Diff: {0:.0f}%<br>".format(round(val["diff"][idx]))
- if isinstance(val["rel"][idx], float):
- htext += "Speedup: {0:.2f}".format(val["rel"][idx])
- hovertext.append(htext)
- traces.append(plgo.Scatter(x=x_vals,
- y=val["val"],
- name=name,
- legendgroup=name,
- mode="lines+markers",
- line=dict(
- color=COLORS[cidx],
- width=2),
- marker=dict(
- symbol="circle",
- size=10
- ),
- text=hovertext,
- hoverinfo="text+name"
- ))
- traces.append(plgo.Scatter(x=x_vals,
- y=val["ideal"],
- name="{0} perfect".format(name),
- legendgroup=name,
- showlegend=False,
- mode="lines",
- line=dict(
- color=COLORS[cidx],
- width=2,
- dash="dash"),
- text=["Perfect: {0:.2f}Mpps".format(y)
- for y in val["ideal"]],
- hoverinfo="text"
- ))
- cidx += 1
- except (IndexError, ValueError, KeyError) as err:
- logging.warning("No data for '{0}'".format(name))
- logging.warning(repr(err))
-
- try:
- # Create plot
- logging.info(" Writing file '{0}{1}'.".
- format(plot["output-file"], plot["output-file-type"]))
- layout = deepcopy(plot["layout"])
- if layout.get("title", None):
- layout["title"] = "<b>Speedup Multi-core:</b> {0}". \
- format(layout["title"])
- layout["annotations"].extend(annotations)
- plpl = plgo.Figure(data=traces, layout=layout)
-
- # Export Plot
- ploff.plot(plpl,
- show_link=False, auto_open=False,
- filename='{0}{1}'.format(plot["output-file"],
- plot["output-file-type"]))
- except PlotlyError as err:
- logging.error(" Finished with error: {}".
- format(str(err).replace("\n", " ")))
- return
-
-
-def plot_http_server_performance_box(plot, input_data):
- """Generate the plot(s) with algorithm: plot_http_server_performance_box
- specified in the specification file.
-
- :param plot: Plot to generate.
- :param input_data: Data to process.
- :type plot: pandas.Series
- :type input_data: InputData
- """
-
- # Transform the data
- logging.info(" Creating the data set for the {0} '{1}'.".
- format(plot.get("type", ""), plot.get("title", "")))
- data = input_data.filter_data(plot)
- if data is None:
- logging.error("No data.")
- return
-
- # Prepare the data for the plot
- y_vals = dict()
- for job in data:
- for build in job:
- for test in build:
- if y_vals.get(test["name"], None) is None:
- y_vals[test["name"]] = list()
- try:
- y_vals[test["name"]].append(test["result"])
- except (KeyError, TypeError):
- y_vals[test["name"]].append(None)
-
- # Add None to the lists with missing data
- max_len = 0
- nr_of_samples = list()
- for val in y_vals.values():
- if len(val) > max_len:
- max_len = len(val)
- nr_of_samples.append(len(val))
- for key, val in y_vals.items():
- if len(val) < max_len:
- val.extend([None for _ in range(max_len - len(val))])
-
- # Add plot traces
- traces = list()
- df = pd.DataFrame(y_vals)
- df.head()
- for i, col in enumerate(df.columns):
- name = "{nr}. ({samples:02d} run{plural}) {name}".\
- format(nr=(i + 1),
- samples=nr_of_samples[i],
- plural='s' if nr_of_samples[i] > 1 else '',
- name=col.lower().replace('-ndrpdr', ''))
- if len(name) > 50:
- name_lst = name.split('-')
- name = ""
- split_name = True
- for segment in name_lst:
- if (len(name) + len(segment) + 1) > 50 and split_name:
- name += "<br> "
- split_name = False
- name += segment + '-'
- name = name[:-1]
-
- traces.append(plgo.Box(x=[str(i + 1) + '.'] * len(df[col]),
- y=df[col],
- name=name,
- **plot["traces"]))
- try:
- # Create plot
- plpl = plgo.Figure(data=traces, layout=plot["layout"])
-
- # Export Plot
- logging.info(" Writing file '{0}{1}'.".
- format(plot["output-file"], plot["output-file-type"]))
- ploff.plot(plpl, show_link=False, auto_open=False,
- filename='{0}{1}'.format(plot["output-file"],
- plot["output-file-type"]))
- except PlotlyError as err:
- logging.error(" Finished with error: {}".
- format(str(err).replace("\n", " ")))
- return