diff options
author | Vratko Polak <vrpolak@cisco.com> | 2018-12-10 12:35:21 +0100 |
---|---|---|
committer | Tibor Frank <tifrank@cisco.com> | 2018-12-13 12:29:06 +0000 |
commit | 22cd7ebc075483d2977393429260df818072fa52 (patch) | |
tree | fe3e550b2541b76b17146a379596fd3be49da77b /resources/tools/presentation_new/generator_plots.py | |
parent | 9b51f36d4ad4d5364d010a32e4e3df0e5c695e9d (diff) |
Trending: New sensitive detection
This enables PAL to consider burst size and stdev
when detecting anomalies.
Currently added as a separate presentation_new directory,
so the previous detection is still available by default.
TODO: If the state with two detections persists for some time,
create a script for generating presentation_new/
(from presentation/) to simplify maintenance.
Change-Id: Ic118aaf5ff036bf244c5820c86fa3766547fa938
Signed-off-by: Vratko Polak <vrpolak@cisco.com>
Diffstat (limited to 'resources/tools/presentation_new/generator_plots.py')
-rw-r--r-- | resources/tools/presentation_new/generator_plots.py | 843 |
1 files changed, 843 insertions, 0 deletions
diff --git a/resources/tools/presentation_new/generator_plots.py b/resources/tools/presentation_new/generator_plots.py new file mode 100644 index 0000000000..32f146bca8 --- /dev/null +++ b/resources/tools/presentation_new/generator_plots.py @@ -0,0 +1,843 @@ +# Copyright (c) 2018 Cisco and/or its affiliates. +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at: +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +"""Algorithms to generate plots. +""" + + +import logging +import pandas as pd +import plotly.offline as ploff +import plotly.graph_objs as plgo + +from plotly.exceptions import PlotlyError +from collections import OrderedDict +from copy import deepcopy + +from utils import mean + + +COLORS = ["SkyBlue", "Olive", "Purple", "Coral", "Indigo", "Pink", + "Chocolate", "Brown", "Magenta", "Cyan", "Orange", "Black", + "Violet", "Blue", "Yellow", "BurlyWood", "CadetBlue", "Crimson", + "DarkBlue", "DarkCyan", "DarkGreen", "Green", "GoldenRod", + "LightGreen", "LightSeaGreen", "LightSkyBlue", "Maroon", + "MediumSeaGreen", "SeaGreen", "LightSlateGrey"] + + +def generate_plots(spec, data): + """Generate all plots specified in the specification file. + + :param spec: Specification read from the specification file. + :param data: Data to process. + :type spec: Specification + :type data: InputData + """ + + logging.info("Generating the plots ...") + for index, plot in enumerate(spec.plots): + try: + logging.info(" Plot nr {0}: {1}".format(index + 1, + plot.get("title", ""))) + plot["limits"] = spec.configuration["limits"] + eval(plot["algorithm"])(plot, data) + logging.info(" Done.") + except NameError as err: + logging.error("Probably algorithm '{alg}' is not defined: {err}". + format(alg=plot["algorithm"], err=repr(err))) + logging.info("Done.") + + +def plot_performance_box(plot, input_data): + """Generate the plot(s) with algorithm: plot_performance_box + specified in the specification file. + + :param plot: Plot to generate. + :param input_data: Data to process. + :type plot: pandas.Series + :type input_data: InputData + """ + + # Transform the data + plot_title = plot.get("title", "") + logging.info(" Creating the data set for the {0} '{1}'.". + format(plot.get("type", ""), plot_title)) + data = input_data.filter_data(plot) + if data is None: + logging.error("No data.") + return + + # Prepare the data for the plot + y_vals = dict() + y_tags = dict() + for job in data: + for build in job: + for test in build: + if y_vals.get(test["parent"], None) is None: + y_vals[test["parent"]] = list() + y_tags[test["parent"]] = test.get("tags", None) + try: + if test["type"] in ("NDRPDR", ): + if "-pdr" in plot_title.lower(): + y_vals[test["parent"]].\ + append(test["throughput"]["PDR"]["LOWER"]) + elif "-ndr" in plot_title.lower(): + y_vals[test["parent"]]. \ + append(test["throughput"]["NDR"]["LOWER"]) + else: + continue + else: + continue + except (KeyError, TypeError): + y_vals[test["parent"]].append(None) + + # Sort the tests + order = plot.get("sort", None) + if order and y_tags: + y_sorted = OrderedDict() + y_tags_l = {s: [t.lower() for t in ts] for s, ts in y_tags.items()} + for tag in order: + logging.debug(tag) + for suite, tags in y_tags_l.items(): + if "not " in tag: + tag = tag.split(" ")[-1] + if tag.lower() in tags: + continue + else: + if tag.lower() not in tags: + continue + try: + y_sorted[suite] = y_vals.pop(suite) + y_tags_l.pop(suite) + logging.debug(suite) + except KeyError as err: + logging.error("Not found: {0}".format(repr(err))) + finally: + break + else: + y_sorted = y_vals + + # Add None to the lists with missing data + max_len = 0 + nr_of_samples = list() + for val in y_sorted.values(): + if len(val) > max_len: + max_len = len(val) + nr_of_samples.append(len(val)) + for key, val in y_sorted.items(): + if len(val) < max_len: + val.extend([None for _ in range(max_len - len(val))]) + + # Add plot traces + traces = list() + df = pd.DataFrame(y_sorted) + df.head() + y_max = list() + for i, col in enumerate(df.columns): + name = "{nr}. ({samples:02d} run{plural}) {name}".\ + format(nr=(i + 1), + samples=nr_of_samples[i], + plural='s' if nr_of_samples[i] > 1 else '', + name=col.lower().replace('-ndrpdr', '')) + if len(name) > 50: + name_lst = name.split('-') + name = "" + split_name = True + for segment in name_lst: + if (len(name) + len(segment) + 1) > 50 and split_name: + name += "<br> " + split_name = False + name += segment + '-' + name = name[:-1] + + logging.debug(name) + traces.append(plgo.Box(x=[str(i + 1) + '.'] * len(df[col]), + y=[y / 1000000 if y else None for y in df[col]], + name=name, + **plot["traces"])) + try: + val_max = max(df[col]) + except ValueError as err: + logging.error(repr(err)) + continue + if val_max: + y_max.append(int(val_max / 1000000) + 1) + + try: + # Create plot + layout = deepcopy(plot["layout"]) + if layout.get("title", None): + layout["title"] = "<b>Packet Throughput:</b> {0}". \ + format(layout["title"]) + if y_max: + layout["yaxis"]["range"] = [0, max(y_max)] + plpl = plgo.Figure(data=traces, layout=layout) + + # Export Plot + logging.info(" Writing file '{0}{1}'.". + format(plot["output-file"], plot["output-file-type"])) + ploff.plot(plpl, show_link=False, auto_open=False, + filename='{0}{1}'.format(plot["output-file"], + plot["output-file-type"])) + except PlotlyError as err: + logging.error(" Finished with error: {}". + format(repr(err).replace("\n", " "))) + return + + +def plot_latency_error_bars(plot, input_data): + """Generate the plot(s) with algorithm: plot_latency_error_bars + specified in the specification file. + + :param plot: Plot to generate. + :param input_data: Data to process. + :type plot: pandas.Series + :type input_data: InputData + """ + + # Transform the data + plot_title = plot.get("title", "") + logging.info(" Creating the data set for the {0} '{1}'.". + format(plot.get("type", ""), plot_title)) + data = input_data.filter_data(plot) + if data is None: + logging.error("No data.") + return + + # Prepare the data for the plot + y_tmp_vals = dict() + y_tags = dict() + for job in data: + for build in job: + for test in build: + try: + logging.debug("test['latency']: {0}\n". + format(test["latency"])) + except ValueError as err: + logging.warning(repr(err)) + if y_tmp_vals.get(test["parent"], None) is None: + y_tmp_vals[test["parent"]] = [ + list(), # direction1, min + list(), # direction1, avg + list(), # direction1, max + list(), # direction2, min + list(), # direction2, avg + list() # direction2, max + ] + y_tags[test["parent"]] = test.get("tags", None) + try: + if test["type"] in ("NDRPDR", ): + if "-pdr" in plot_title.lower(): + ttype = "PDR" + elif "-ndr" in plot_title.lower(): + ttype = "NDR" + else: + logging.warning("Invalid test type: {0}". + format(test["type"])) + continue + y_tmp_vals[test["parent"]][0].append( + test["latency"][ttype]["direction1"]["min"]) + y_tmp_vals[test["parent"]][1].append( + test["latency"][ttype]["direction1"]["avg"]) + y_tmp_vals[test["parent"]][2].append( + test["latency"][ttype]["direction1"]["max"]) + y_tmp_vals[test["parent"]][3].append( + test["latency"][ttype]["direction2"]["min"]) + y_tmp_vals[test["parent"]][4].append( + test["latency"][ttype]["direction2"]["avg"]) + y_tmp_vals[test["parent"]][5].append( + test["latency"][ttype]["direction2"]["max"]) + else: + logging.warning("Invalid test type: {0}". + format(test["type"])) + continue + except (KeyError, TypeError) as err: + logging.warning(repr(err)) + logging.debug("y_tmp_vals: {0}\n".format(y_tmp_vals)) + + # Sort the tests + order = plot.get("sort", None) + if order and y_tags: + y_sorted = OrderedDict() + y_tags_l = {s: [t.lower() for t in ts] for s, ts in y_tags.items()} + for tag in order: + logging.debug(tag) + for suite, tags in y_tags_l.items(): + if "not " in tag: + tag = tag.split(" ")[-1] + if tag.lower() in tags: + continue + else: + if tag.lower() not in tags: + continue + try: + y_sorted[suite] = y_tmp_vals.pop(suite) + y_tags_l.pop(suite) + logging.debug(suite) + except KeyError as err: + logging.error("Not found: {0}".format(repr(err))) + finally: + break + else: + y_sorted = y_tmp_vals + + logging.debug("y_sorted: {0}\n".format(y_sorted)) + x_vals = list() + y_vals = list() + y_mins = list() + y_maxs = list() + nr_of_samples = list() + for key, val in y_sorted.items(): + name = "-".join(key.split("-")[1:-1]) + if len(name) > 50: + name_lst = name.split('-') + name = "" + split_name = True + for segment in name_lst: + if (len(name) + len(segment) + 1) > 50 and split_name: + name += "<br>" + split_name = False + name += segment + '-' + name = name[:-1] + x_vals.append(name) # dir 1 + y_vals.append(mean(val[1]) if val[1] else None) + y_mins.append(mean(val[0]) if val[0] else None) + y_maxs.append(mean(val[2]) if val[2] else None) + nr_of_samples.append(len(val[1]) if val[1] else 0) + x_vals.append(name) # dir 2 + y_vals.append(mean(val[4]) if val[4] else None) + y_mins.append(mean(val[3]) if val[3] else None) + y_maxs.append(mean(val[5]) if val[5] else None) + nr_of_samples.append(len(val[3]) if val[3] else 0) + + logging.debug("x_vals :{0}\n".format(x_vals)) + logging.debug("y_vals :{0}\n".format(y_vals)) + logging.debug("y_mins :{0}\n".format(y_mins)) + logging.debug("y_maxs :{0}\n".format(y_maxs)) + logging.debug("nr_of_samples :{0}\n".format(nr_of_samples)) + traces = list() + annotations = list() + + for idx in range(len(x_vals)): + if not bool(int(idx % 2)): + direction = "West-East" + else: + direction = "East-West" + hovertext = ("No. of Runs: {nr}<br>" + "Test: {test}<br>" + "Direction: {dir}<br>".format(test=x_vals[idx], + dir=direction, + nr=nr_of_samples[idx])) + if isinstance(y_maxs[idx], float): + hovertext += "Max: {max:.2f}uSec<br>".format(max=y_maxs[idx]) + if isinstance(y_vals[idx], float): + hovertext += "Mean: {avg:.2f}uSec<br>".format(avg=y_vals[idx]) + if isinstance(y_mins[idx], float): + hovertext += "Min: {min:.2f}uSec".format(min=y_mins[idx]) + + if isinstance(y_maxs[idx], float) and isinstance(y_vals[idx], float): + array = [y_maxs[idx] - y_vals[idx], ] + else: + array = [None, ] + if isinstance(y_mins[idx], float) and isinstance(y_vals[idx], float): + arrayminus = [y_vals[idx] - y_mins[idx], ] + else: + arrayminus = [None, ] + logging.debug("y_vals[{1}] :{0}\n".format(y_vals[idx], idx)) + logging.debug("array :{0}\n".format(array)) + logging.debug("arrayminus :{0}\n".format(arrayminus)) + traces.append(plgo.Scatter( + x=[idx, ], + y=[y_vals[idx], ], + name=x_vals[idx], + legendgroup=x_vals[idx], + showlegend=bool(int(idx % 2)), + mode="markers", + error_y=dict( + type='data', + symmetric=False, + array=array, + arrayminus=arrayminus, + color=COLORS[int(idx / 2)] + ), + marker=dict( + size=10, + color=COLORS[int(idx / 2)], + ), + text=hovertext, + hoverinfo="text", + )) + annotations.append(dict( + x=idx, + y=0, + xref="x", + yref="y", + xanchor="center", + yanchor="top", + text="E-W" if bool(int(idx % 2)) else "W-E", + font=dict( + size=16, + ), + align="center", + showarrow=False + )) + + try: + # Create plot + logging.info(" Writing file '{0}{1}'.". + format(plot["output-file"], plot["output-file-type"])) + layout = deepcopy(plot["layout"]) + if layout.get("title", None): + layout["title"] = "<b>Packet Latency:</b> {0}".\ + format(layout["title"]) + layout["annotations"] = annotations + plpl = plgo.Figure(data=traces, layout=layout) + + # Export Plot + ploff.plot(plpl, + show_link=False, auto_open=False, + filename='{0}{1}'.format(plot["output-file"], + plot["output-file-type"])) + except PlotlyError as err: + logging.error(" Finished with error: {}". + format(str(err).replace("\n", " "))) + return + + +def plot_throughput_speedup_analysis(plot, input_data): + """Generate the plot(s) with algorithm: + plot_throughput_speedup_analysis + specified in the specification file. + + :param plot: Plot to generate. + :param input_data: Data to process. + :type plot: pandas.Series + :type input_data: InputData + """ + + # Transform the data + plot_title = plot.get("title", "") + logging.info(" Creating the data set for the {0} '{1}'.". + format(plot.get("type", ""), plot_title)) + data = input_data.filter_data(plot) + if data is None: + logging.error("No data.") + return + + y_vals = dict() + y_tags = dict() + for job in data: + for build in job: + for test in build: + if y_vals.get(test["parent"], None) is None: + y_vals[test["parent"]] = {"1": list(), + "2": list(), + "4": list()} + y_tags[test["parent"]] = test.get("tags", None) + try: + if test["type"] in ("NDRPDR",): + if "-pdr" in plot_title.lower(): + ttype = "PDR" + elif "-ndr" in plot_title.lower(): + ttype = "NDR" + else: + continue + if "1C" in test["tags"]: + y_vals[test["parent"]]["1"]. \ + append(test["throughput"][ttype]["LOWER"]) + elif "2C" in test["tags"]: + y_vals[test["parent"]]["2"]. \ + append(test["throughput"][ttype]["LOWER"]) + elif "4C" in test["tags"]: + y_vals[test["parent"]]["4"]. \ + append(test["throughput"][ttype]["LOWER"]) + except (KeyError, TypeError): + pass + + if not y_vals: + logging.warning("No data for the plot '{}'". + format(plot.get("title", ""))) + return + + y_1c_max = dict() + for test_name, test_vals in y_vals.items(): + for key, test_val in test_vals.items(): + if test_val: + avg_val = sum(test_val) / len(test_val) + y_vals[test_name][key] = (avg_val, len(test_val)) + ideal = avg_val / (int(key) * 1000000.0) + if test_name not in y_1c_max or ideal > y_1c_max[test_name]: + y_1c_max[test_name] = ideal + + vals = dict() + y_max = list() + nic_limit = 0 + lnk_limit = 0 + pci_limit = plot["limits"]["pci"]["pci-g3-x8"] + for test_name, test_vals in y_vals.items(): + try: + if test_vals["1"][1]: + name = "-".join(test_name.split('-')[1:-1]) + if len(name) > 50: + name_lst = name.split('-') + name = "" + split_name = True + for segment in name_lst: + if (len(name) + len(segment) + 1) > 50 and split_name: + name += "<br>" + split_name = False + name += segment + '-' + name = name[:-1] + + vals[name] = dict() + y_val_1 = test_vals["1"][0] / 1000000.0 + y_val_2 = test_vals["2"][0] / 1000000.0 if test_vals["2"][0] \ + else None + y_val_4 = test_vals["4"][0] / 1000000.0 if test_vals["4"][0] \ + else None + + vals[name]["val"] = [y_val_1, y_val_2, y_val_4] + vals[name]["rel"] = [1.0, None, None] + vals[name]["ideal"] = [y_1c_max[test_name], + y_1c_max[test_name] * 2, + y_1c_max[test_name] * 4] + vals[name]["diff"] = [(y_val_1 - y_1c_max[test_name]) * 100 / + y_val_1, None, None] + vals[name]["count"] = [test_vals["1"][1], + test_vals["2"][1], + test_vals["4"][1]] + + try: + val_max = max(max(vals[name]["val"], vals[name]["ideal"])) + except ValueError as err: + logging.error(err) + continue + if val_max: + y_max.append(int((val_max / 10) + 1) * 10) + + if y_val_2: + vals[name]["rel"][1] = round(y_val_2 / y_val_1, 2) + vals[name]["diff"][1] = \ + (y_val_2 - vals[name]["ideal"][1]) * 100 / y_val_2 + if y_val_4: + vals[name]["rel"][2] = round(y_val_4 / y_val_1, 2) + vals[name]["diff"][2] = \ + (y_val_4 - vals[name]["ideal"][2]) * 100 / y_val_4 + except IndexError as err: + logging.warning("No data for '{0}'".format(test_name)) + logging.warning(repr(err)) + + # Limits: + if "x520" in test_name: + limit = plot["limits"]["nic"]["x520"] + elif "x710" in test_name: + limit = plot["limits"]["nic"]["x710"] + elif "xxv710" in test_name: + limit = plot["limits"]["nic"]["xxv710"] + elif "xl710" in test_name: + limit = plot["limits"]["nic"]["xl710"] + elif "x553" in test_name: + limit = plot["limits"]["nic"]["x553"] + else: + limit = 0 + if limit > nic_limit: + nic_limit = limit + + mul = 2 if "ge2p" in test_name else 1 + if "10ge" in test_name: + limit = plot["limits"]["link"]["10ge"] * mul + elif "25ge" in test_name: + limit = plot["limits"]["link"]["25ge"] * mul + elif "40ge" in test_name: + limit = plot["limits"]["link"]["40ge"] * mul + elif "100ge" in test_name: + limit = plot["limits"]["link"]["100ge"] * mul + else: + limit = 0 + if limit > lnk_limit: + lnk_limit = limit + + # Sort the tests + order = plot.get("sort", None) + if order and y_tags: + y_sorted = OrderedDict() + y_tags_l = {s: [t.lower() for t in ts] for s, ts in y_tags.items()} + for tag in order: + for test, tags in y_tags_l.items(): + if tag.lower() in tags: + name = "-".join(test.split('-')[1:-1]) + try: + y_sorted[name] = vals.pop(name) + y_tags_l.pop(test) + except KeyError as err: + logging.error("Not found: {0}".format(err)) + finally: + break + else: + y_sorted = vals + + traces = list() + annotations = list() + x_vals = [1, 2, 4] + + # Limits: + try: + threshold = 1.1 * max(y_max) # 10% + except ValueError as err: + logging.error(err) + return + nic_limit /= 1000000.0 + if nic_limit < threshold: + traces.append(plgo.Scatter( + x=x_vals, + y=[nic_limit, ] * len(x_vals), + name="NIC: {0:.2f}Mpps".format(nic_limit), + showlegend=False, + mode="lines", + line=dict( + dash="dot", + color=COLORS[-1], + width=1), + hoverinfo="none" + )) + annotations.append(dict( + x=1, + y=nic_limit, + xref="x", + yref="y", + xanchor="left", + yanchor="bottom", + text="NIC: {0:.2f}Mpps".format(nic_limit), + font=dict( + size=14, + color=COLORS[-1], + ), + align="left", + showarrow=False + )) + y_max.append(int((nic_limit / 10) + 1) * 10) + + lnk_limit /= 1000000.0 + if lnk_limit < threshold: + traces.append(plgo.Scatter( + x=x_vals, + y=[lnk_limit, ] * len(x_vals), + name="Link: {0:.2f}Mpps".format(lnk_limit), + showlegend=False, + mode="lines", + line=dict( + dash="dot", + color=COLORS[-2], + width=1), + hoverinfo="none" + )) + annotations.append(dict( + x=1, + y=lnk_limit, + xref="x", + yref="y", + xanchor="left", + yanchor="bottom", + text="Link: {0:.2f}Mpps".format(lnk_limit), + font=dict( + size=14, + color=COLORS[-2], + ), + align="left", + showarrow=False + )) + y_max.append(int((lnk_limit / 10) + 1) * 10) + + pci_limit /= 1000000.0 + if pci_limit < threshold: + traces.append(plgo.Scatter( + x=x_vals, + y=[pci_limit, ] * len(x_vals), + name="PCIe: {0:.2f}Mpps".format(pci_limit), + showlegend=False, + mode="lines", + line=dict( + dash="dot", + color=COLORS[-3], + width=1), + hoverinfo="none" + )) + annotations.append(dict( + x=1, + y=pci_limit, + xref="x", + yref="y", + xanchor="left", + yanchor="bottom", + text="PCIe: {0:.2f}Mpps".format(pci_limit), + font=dict( + size=14, + color=COLORS[-3], + ), + align="left", + showarrow=False + )) + y_max.append(int((pci_limit / 10) + 1) * 10) + + # Perfect and measured: + cidx = 0 + for name, val in y_sorted.iteritems(): + hovertext = list() + try: + for idx in range(len(val["val"])): + htext = "" + if isinstance(val["val"][idx], float): + htext += "No. of Runs: {1}<br>" \ + "Mean: {0:.2f}Mpps<br>".format(val["val"][idx], + val["count"][idx]) + if isinstance(val["diff"][idx], float): + htext += "Diff: {0:.0f}%<br>".format(round(val["diff"][idx])) + if isinstance(val["rel"][idx], float): + htext += "Speedup: {0:.2f}".format(val["rel"][idx]) + hovertext.append(htext) + traces.append(plgo.Scatter(x=x_vals, + y=val["val"], + name=name, + legendgroup=name, + mode="lines+markers", + line=dict( + color=COLORS[cidx], + width=2), + marker=dict( + symbol="circle", + size=10 + ), + text=hovertext, + hoverinfo="text+name" + )) + traces.append(plgo.Scatter(x=x_vals, + y=val["ideal"], + name="{0} perfect".format(name), + legendgroup=name, + showlegend=False, + mode="lines", + line=dict( + color=COLORS[cidx], + width=2, + dash="dash"), + text=["Perfect: {0:.2f}Mpps".format(y) + for y in val["ideal"]], + hoverinfo="text" + )) + cidx += 1 + except (IndexError, ValueError, KeyError) as err: + logging.warning("No data for '{0}'".format(name)) + logging.warning(repr(err)) + + try: + # Create plot + logging.info(" Writing file '{0}{1}'.". + format(plot["output-file"], plot["output-file-type"])) + layout = deepcopy(plot["layout"]) + if layout.get("title", None): + layout["title"] = "<b>Speedup Multi-core:</b> {0}". \ + format(layout["title"]) + layout["annotations"].extend(annotations) + plpl = plgo.Figure(data=traces, layout=layout) + + # Export Plot + ploff.plot(plpl, + show_link=False, auto_open=False, + filename='{0}{1}'.format(plot["output-file"], + plot["output-file-type"])) + except PlotlyError as err: + logging.error(" Finished with error: {}". + format(str(err).replace("\n", " "))) + return + + +def plot_http_server_performance_box(plot, input_data): + """Generate the plot(s) with algorithm: plot_http_server_performance_box + specified in the specification file. + + :param plot: Plot to generate. + :param input_data: Data to process. + :type plot: pandas.Series + :type input_data: InputData + """ + + # Transform the data + logging.info(" Creating the data set for the {0} '{1}'.". + format(plot.get("type", ""), plot.get("title", ""))) + data = input_data.filter_data(plot) + if data is None: + logging.error("No data.") + return + + # Prepare the data for the plot + y_vals = dict() + for job in data: + for build in job: + for test in build: + if y_vals.get(test["name"], None) is None: + y_vals[test["name"]] = list() + try: + y_vals[test["name"]].append(test["result"]) + except (KeyError, TypeError): + y_vals[test["name"]].append(None) + + # Add None to the lists with missing data + max_len = 0 + nr_of_samples = list() + for val in y_vals.values(): + if len(val) > max_len: + max_len = len(val) + nr_of_samples.append(len(val)) + for key, val in y_vals.items(): + if len(val) < max_len: + val.extend([None for _ in range(max_len - len(val))]) + + # Add plot traces + traces = list() + df = pd.DataFrame(y_vals) + df.head() + for i, col in enumerate(df.columns): + name = "{nr}. ({samples:02d} run{plural}) {name}".\ + format(nr=(i + 1), + samples=nr_of_samples[i], + plural='s' if nr_of_samples[i] > 1 else '', + name=col.lower().replace('-ndrpdr', '')) + if len(name) > 50: + name_lst = name.split('-') + name = "" + split_name = True + for segment in name_lst: + if (len(name) + len(segment) + 1) > 50 and split_name: + name += "<br> " + split_name = False + name += segment + '-' + name = name[:-1] + + traces.append(plgo.Box(x=[str(i + 1) + '.'] * len(df[col]), + y=df[col], + name=name, + **plot["traces"])) + try: + # Create plot + plpl = plgo.Figure(data=traces, layout=plot["layout"]) + + # Export Plot + logging.info(" Writing file '{0}{1}'.". + format(plot["output-file"], plot["output-file-type"])) + ploff.plot(plpl, show_link=False, auto_open=False, + filename='{0}{1}'.format(plot["output-file"], + plot["output-file-type"])) + except PlotlyError as err: + logging.error(" Finished with error: {}". + format(str(err).replace("\n", " "))) + return |