diff options
author | Vratko Polak <vrpolak@cisco.com> | 2018-12-10 12:35:21 +0100 |
---|---|---|
committer | Tibor Frank <tifrank@cisco.com> | 2018-12-13 12:29:06 +0000 |
commit | 22cd7ebc075483d2977393429260df818072fa52 (patch) | |
tree | fe3e550b2541b76b17146a379596fd3be49da77b /resources/tools/presentation_new/utils.py | |
parent | 9b51f36d4ad4d5364d010a32e4e3df0e5c695e9d (diff) |
Trending: New sensitive detection
This enables PAL to consider burst size and stdev
when detecting anomalies.
Currently added as a separate presentation_new directory,
so the previous detection is still available by default.
TODO: If the state with two detections persists for some time,
create a script for generating presentation_new/
(from presentation/) to simplify maintenance.
Change-Id: Ic118aaf5ff036bf244c5820c86fa3766547fa938
Signed-off-by: Vratko Polak <vrpolak@cisco.com>
Diffstat (limited to 'resources/tools/presentation_new/utils.py')
-rw-r--r-- | resources/tools/presentation_new/utils.py | 317 |
1 files changed, 317 insertions, 0 deletions
diff --git a/resources/tools/presentation_new/utils.py b/resources/tools/presentation_new/utils.py new file mode 100644 index 0000000000..51bb1d0305 --- /dev/null +++ b/resources/tools/presentation_new/utils.py @@ -0,0 +1,317 @@ +# Copyright (c) 2018 Cisco and/or its affiliates. +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at: +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +"""General purpose utilities. +""" + +import multiprocessing +import subprocess +import numpy as np +import logging +import csv +import prettytable + +from os import walk, makedirs, environ +from os.path import join, isdir +from shutil import move, Error +from math import sqrt + +from errors import PresentationError +from jumpavg.BitCountingClassifier import BitCountingClassifier + + +def mean(items): + """Calculate mean value from the items. + + :param items: Mean value is calculated from these items. + :type items: list + :returns: MEan value. + :rtype: float + """ + + return float(sum(items)) / len(items) + + +def stdev(items): + """Calculate stdev from the items. + + :param items: Stdev is calculated from these items. + :type items: list + :returns: Stdev. + :rtype: float + """ + + avg = mean(items) + variance = [(x - avg) ** 2 for x in items] + stddev = sqrt(mean(variance)) + return stddev + + +def relative_change(nr1, nr2): + """Compute relative change of two values. + + :param nr1: The first number. + :param nr2: The second number. + :type nr1: float + :type nr2: float + :returns: Relative change of nr1. + :rtype: float + """ + + return float(((nr2 - nr1) / nr1) * 100) + + +def get_files(path, extension=None, full_path=True): + """Generates the list of files to process. + + :param path: Path to files. + :param extension: Extension of files to process. If it is the empty string, + all files will be processed. + :param full_path: If True, the files with full path are generated. + :type path: str + :type extension: str + :type full_path: bool + :returns: List of files to process. + :rtype: list + """ + + file_list = list() + for root, _, files in walk(path): + for filename in files: + if extension: + if filename.endswith(extension): + if full_path: + file_list.append(join(root, filename)) + else: + file_list.append(filename) + else: + file_list.append(join(root, filename)) + + return file_list + + +def get_rst_title_char(level): + """Return character used for the given title level in rst files. + + :param level: Level of the title. + :type: int + :returns: Character used for the given title level in rst files. + :rtype: str + """ + chars = ('=', '-', '`', "'", '.', '~', '*', '+', '^') + if level < len(chars): + return chars[level] + else: + return chars[-1] + + +def execute_command(cmd): + """Execute the command in a subprocess and log the stdout and stderr. + + :param cmd: Command to execute. + :type cmd: str + :returns: Return code of the executed command, stdout and stderr. + :rtype: tuple(int, str, str) + """ + + env = environ.copy() + proc = subprocess.Popen( + [cmd], + stdout=subprocess.PIPE, + stderr=subprocess.PIPE, + shell=True, + env=env) + + stdout, stderr = proc.communicate() + + if stdout: + logging.info(stdout) + if stderr: + logging.info(stderr) + + if proc.returncode != 0: + logging.error(" Command execution failed.") + return proc.returncode, stdout, stderr + + +def get_last_successful_build_number(jenkins_url, job_name): + """Get the number of the last successful build of the given job. + + :param jenkins_url: Jenkins URL. + :param job_name: Job name. + :type jenkins_url: str + :type job_name: str + :returns: The build number as a string. + :rtype: str + """ + + url = "{}/{}/lastSuccessfulBuild/buildNumber".format(jenkins_url, job_name) + cmd = "wget -qO- {url}".format(url=url) + + return execute_command(cmd) + + +def get_last_completed_build_number(jenkins_url, job_name): + """Get the number of the last completed build of the given job. + + :param jenkins_url: Jenkins URL. + :param job_name: Job name. + :type jenkins_url: str + :type job_name: str + :returns: The build number as a string. + :rtype: str + """ + + url = "{}/{}/lastCompletedBuild/buildNumber".format(jenkins_url, job_name) + cmd = "wget -qO- {url}".format(url=url) + + return execute_command(cmd) + + +def archive_input_data(spec): + """Archive the report. + + :param spec: Specification read from the specification file. + :type spec: Specification + :raises PresentationError: If it is not possible to archive the input data. + """ + + logging.info(" Archiving the input data files ...") + + extension = spec.input["file-format"] + data_files = get_files(spec.environment["paths"]["DIR[WORKING,DATA]"], + extension=extension) + dst = spec.environment["paths"]["DIR[STATIC,ARCH]"] + logging.info(" Destination: {0}".format(dst)) + + try: + if not isdir(dst): + makedirs(dst) + + for data_file in data_files: + logging.info(" Moving the file: {0} ...".format(data_file)) + move(data_file, dst) + + except (Error, OSError) as err: + raise PresentationError("Not possible to archive the input data.", + str(err)) + + logging.info(" Done.") + + +def classify_anomalies(data): + """Process the data and return anomalies and trending values. + + Gather data into groups with average as trend value. + Decorate values within groups to be normal, + the first value of changed average as a regression, or a progression. + + :param data: Full data set with unavailable samples replaced by nan. + :type data: OrderedDict + :returns: Classification and trend values + :rtype: 2-tuple, list of strings and list of floats + """ + # Nan mean something went wrong. + # Use 0.0 to cause that being reported as a severe regression. + bare_data = [0.0 if np.isnan(sample.avg) else sample + for _, sample in data.iteritems()] + # TODO: Put analogous iterator into jumpavg library. + groups = BitCountingClassifier().classify(bare_data) + groups.reverse() # Just to use .pop() for FIFO. + classification = [] + avgs = [] + active_group = None + values_left = 0 + avg = 0.0 + for _, sample in data.iteritems(): + if np.isnan(sample.avg): + classification.append("outlier") + avgs.append(sample.avg) + continue + if values_left < 1 or active_group is None: + values_left = 0 + while values_left < 1: # Ignore empty groups (should not happen). + active_group = groups.pop() + values_left = len(active_group.values) + avg = active_group.metadata.avg + classification.append(active_group.metadata.classification) + avgs.append(avg) + values_left -= 1 + continue + classification.append("normal") + avgs.append(avg) + values_left -= 1 + return classification, avgs + + +def convert_csv_to_pretty_txt(csv_file, txt_file): + """Convert the given csv table to pretty text table. + + :param csv_file: The path to the input csv file. + :param txt_file: The path to the output pretty text file. + :type csv_file: str + :type txt_file: str + """ + + txt_table = None + with open(csv_file, 'rb') as csv_file: + csv_content = csv.reader(csv_file, delimiter=',', quotechar='"') + for row in csv_content: + if txt_table is None: + txt_table = prettytable.PrettyTable(row) + else: + txt_table.add_row(row) + txt_table.align["Test case"] = "l" + if txt_table: + with open(txt_file, "w") as txt_file: + txt_file.write(str(txt_table)) + + +class Worker(multiprocessing.Process): + """Worker class used to process tasks in separate parallel processes. + """ + + def __init__(self, work_queue, data_queue, func): + """Initialization. + + :param work_queue: Queue with items to process. + :param data_queue: Shared memory between processes. Queue which keeps + the result data. This data is then read by the main process and used + in further processing. + :param func: Function which is executed by the worker. + :type work_queue: multiprocessing.JoinableQueue + :type data_queue: multiprocessing.Manager().Queue() + :type func: Callable object + """ + super(Worker, self).__init__() + self._work_queue = work_queue + self._data_queue = data_queue + self._func = func + + def run(self): + """Method representing the process's activity. + """ + + while True: + try: + self.process(self._work_queue.get()) + finally: + self._work_queue.task_done() + + def process(self, item_to_process): + """Method executed by the runner. + + :param item_to_process: Data to be processed by the function. + :type item_to_process: tuple + """ + self._func(self.pid, self._data_queue, *item_to_process) |