aboutsummaryrefslogtreecommitdiffstats
path: root/resources
diff options
context:
space:
mode:
authorTibor Frank <tifrank@cisco.com>2018-04-25 15:28:14 +0200
committerTibor Frank <tifrank@cisco.com>2018-04-25 15:29:11 +0200
commit6e1a15acc7bd3685d71f9d34238181c681dcd4c0 (patch)
treef1edad24a5e65f40d0b332c05326a2ecf0238f4f /resources
parent0a8855adbb30a6079a538bea179a13988fdc20c0 (diff)
CSIT-1041: Trending dashboard
Change-Id: I1d6aae1839a9d6d44407c90ff257bc37495f0cfa Signed-off-by: Tibor Frank <tifrank@cisco.com>
Diffstat (limited to 'resources')
-rw-r--r--resources/tools/presentation/generator_tables.py205
1 files changed, 63 insertions, 142 deletions
diff --git a/resources/tools/presentation/generator_tables.py b/resources/tools/presentation/generator_tables.py
index c41c6de004..c2007a1a49 100644
--- a/resources/tools/presentation/generator_tables.py
+++ b/resources/tools/presentation/generator_tables.py
@@ -22,6 +22,7 @@ import pandas as pd
from string import replace
from math import isnan
+from numpy import nan
from xml.etree import ElementTree as ET
from errors import PresentationError
@@ -688,12 +689,12 @@ def table_performance_trending_dashboard(table, input_data):
# Prepare the header of the tables
header = ["Test Case",
- "Throughput Trend [Mpps]",
- "Long Trend Compliance",
- "Trend Compliance",
- "Top Anomaly [Mpps]",
- "Change [%]",
- "Outliers [Number]"
+ "Trend [Mpps]",
+ "Short-Term Change [%]",
+ "Long-Term Change [%]",
+ "Regressions [#]",
+ "Progressions [#]",
+ "Outliers [#]"
]
header_str = ",".join(header) + "\n"
@@ -719,154 +720,81 @@ def table_performance_trending_dashboard(table, input_data):
if len(tbl_dict[tst_name]["data"]) > 2:
pd_data = pd.Series(tbl_dict[tst_name]["data"])
+ last_key = pd_data.keys()[-1]
win_size = min(pd_data.size, table["window"])
- # Test name:
- name = tbl_dict[tst_name]["name"]
+ key_14 = pd_data.keys()[-(pd_data.size - win_size)]
+ long_win_size = min(pd_data.size, table["long-trend-window"])
+
+ data_t, _ = split_outliers(pd_data, outlier_const=1.5,
+ window=win_size)
- median = pd_data.rolling(window=win_size, min_periods=2).median()
- median_idx = pd_data.size - table["long-trend-window"]
- median_idx = 0 if median_idx < 0 else median_idx
+ median_t = data_t.rolling(window=win_size, min_periods=2).median()
+ stdev_t = data_t.rolling(window=win_size, min_periods=2).std()
+ median_idx = pd_data.size - long_win_size
try:
- max_median = max([x for x in median.values[median_idx:]
+ max_median = max([x for x in median_t.values[median_idx:]
if not isnan(x)])
except ValueError:
- max_median = None
- trimmed_data, _ = split_outliers(pd_data, outlier_const=1.5,
- window=win_size)
- stdev_t = pd_data.rolling(window=win_size, min_periods=2).std()
-
- rel_change_lst = [None, ]
- classification_lst = [None, ]
- median_lst = [None, ]
- sample_lst = [None, ]
- first = True
+ max_median = nan
+ try:
+ last_median_t = median_t[last_key]
+ except KeyError:
+ last_median_t = nan
+ try:
+ median_t_14 = median_t[key_14]
+ except KeyError:
+ median_t_14 = nan
+
+ # Test name:
+ name = tbl_dict[tst_name]["name"]
+
+ # Classification list:
+ classification_lst = list()
for build_nr, value in pd_data.iteritems():
- if first:
- first = False
- continue
- # Relative changes list:
- if not isnan(value) \
- and not isnan(median[build_nr]) \
- and median[build_nr] != 0:
- rel_change_lst.append(round(
- relative_change(float(median[build_nr]), float(value)),
- 2))
- else:
- rel_change_lst.append(None)
- # Classification list:
- if isnan(trimmed_data[build_nr]) \
- or isnan(median[build_nr]) \
+ if isnan(data_t[build_nr]) \
+ or isnan(median_t[build_nr]) \
or isnan(stdev_t[build_nr]) \
or isnan(value):
classification_lst.append("outlier")
- elif value < (median[build_nr] - 3 * stdev_t[build_nr]):
+ elif value < (median_t[build_nr] - 3 * stdev_t[build_nr]):
classification_lst.append("regression")
- elif value > (median[build_nr] + 3 * stdev_t[build_nr]):
+ elif value > (median_t[build_nr] + 3 * stdev_t[build_nr]):
classification_lst.append("progression")
else:
classification_lst.append("normal")
- sample_lst.append(value)
- median_lst.append(median[build_nr])
-
- last_idx = len(classification_lst) - 1
- first_idx = last_idx - int(table["evaluated-window"])
- if first_idx < 0:
- first_idx = 0
-
- nr_outliers = 0
- consecutive_outliers = 0
- failure = False
- for item in classification_lst[first_idx:]:
- if item == "outlier":
- nr_outliers += 1
- consecutive_outliers += 1
- if consecutive_outliers == 3:
- failure = True
- else:
- consecutive_outliers = 0
-
- if failure:
- classification = "failure"
- elif "regression" in classification_lst[first_idx:]:
- classification = "regression"
- elif "progression" in classification_lst[first_idx:]:
- classification = "progression"
+
+ if isnan(last_median_t) or isnan(median_t_14) or median_t_14 == 0:
+ rel_change_last = nan
else:
- classification = "normal"
+ rel_change_last = round(
+ (last_median_t - median_t_14) / median_t_14, 2)
- if classification == "normal":
- index = len(classification_lst) - 1
+ if isnan(max_median) or isnan(last_median_t) or max_median == 0:
+ rel_change_long = nan
else:
- tmp_classification = "outlier" if classification == "failure" \
- else classification
- index = None
- for idx in range(first_idx, len(classification_lst)):
- if classification_lst[idx] == tmp_classification:
- if rel_change_lst[idx]:
- index = idx
- break
- if index is None:
- continue
- for idx in range(index+1, len(classification_lst)):
- if classification_lst[idx] == tmp_classification:
- if rel_change_lst[idx]:
- if (abs(rel_change_lst[idx]) >
- abs(rel_change_lst[index])):
- index = idx
-
- logging.debug("{}".format(name))
- logging.debug("sample_lst: {} - {}".
- format(len(sample_lst), sample_lst))
- logging.debug("median_lst: {} - {}".
- format(len(median_lst), median_lst))
- logging.debug("rel_change: {} - {}".
- format(len(rel_change_lst), rel_change_lst))
- logging.debug("classn_lst: {} - {}".
- format(len(classification_lst), classification_lst))
- logging.debug("index: {}".format(index))
- logging.debug("classifica: {}".format(classification))
+ rel_change_long = round(
+ (last_median_t - max_median) / max_median, 2)
+
+ tbl_lst.append([name,
+ '-' if isnan(last_median_t) else
+ round(last_median_t / 1000000, 2),
+ '-' if isnan(rel_change_last) else rel_change_last,
+ '-' if isnan(rel_change_long) else rel_change_long,
+ classification_lst[win_size:].count("regression"),
+ classification_lst[win_size:].count("progression"),
+ classification_lst[win_size:].count("outlier")])
+
+ tbl_lst.sort(key=lambda rel: rel[0])
- try:
- trend = round(float(median_lst[-1]) / 1000000, 2) \
- if not isnan(median_lst[-1]) else '-'
- sample = round(float(sample_lst[index]) / 1000000, 2) \
- if not isnan(sample_lst[index]) else '-'
- rel_change = rel_change_lst[index] \
- if rel_change_lst[index] is not None else '-'
- if max_median is not None:
- if not isnan(sample_lst[index]):
- long_trend_threshold = \
- max_median * (table["long-trend-threshold"] / 100)
- if sample_lst[index] < long_trend_threshold:
- long_trend_classification = "failure"
- else:
- long_trend_classification = 'normal'
- else:
- long_trend_classification = "failure"
- else:
- long_trend_classification = '-'
- tbl_lst.append([name,
- trend,
- long_trend_classification,
- classification,
- '-' if classification == "normal" else sample,
- '-' if classification == "normal" else
- rel_change,
- nr_outliers])
- except IndexError as err:
- logging.error("{}".format(err))
- continue
-
- # Sort the table according to the classification
tbl_sorted = list()
- for long_trend_class in ("failure", 'normal', '-'):
- tbl_long = [item for item in tbl_lst if item[2] == long_trend_class]
- for classification in \
- ("failure", "regression", "progression", "normal"):
- tbl_tmp = [item for item in tbl_long if item[3] == classification]
- tbl_tmp.sort(key=lambda rel: rel[0])
- tbl_sorted.extend(tbl_tmp)
+ for nrr in range(table["window"], -1, -1):
+ tbl_reg = [item for item in tbl_lst if item[4] == nrr]
+ for nrp in range(table["window"], -1, -1):
+ tbl_pro = [item for item in tbl_reg if item[5] == nrp]
+ for nro in range(table["window"], -1, -1):
+ tbl_out = [item for item in tbl_pro if item[5] == nro]
+ tbl_sorted.extend(tbl_out)
file_name = "{0}{1}".format(table["output-file"], table["output-file-ext"])
@@ -1002,13 +930,6 @@ def table_performance_trending_dashboard_html(table, input_data):
ref = ET.SubElement(td, "a", attrib=dict(href=url))
ref.text = item
- if c_idx == 3:
- if item == "regression":
- td.set("bgcolor", "#eca1a6")
- elif item == "failure":
- td.set("bgcolor", "#d6cbd3")
- elif item == "progression":
- td.set("bgcolor", "#bdcebe")
if c_idx > 0:
td.text = item