diff options
-rw-r--r-- | resources/tools/presentation/generator_CPTA.py | 135 | ||||
-rw-r--r-- | resources/tools/presentation/generator_tables.py | 97 | ||||
-rw-r--r-- | resources/tools/presentation/specification_CPTA.yaml | 6 | ||||
-rw-r--r-- | resources/tools/presentation/utils.py | 42 |
4 files changed, 130 insertions, 150 deletions
diff --git a/resources/tools/presentation/generator_CPTA.py b/resources/tools/presentation/generator_CPTA.py index 73d55affa2..2c62e11a97 100644 --- a/resources/tools/presentation/generator_CPTA.py +++ b/resources/tools/presentation/generator_CPTA.py @@ -22,13 +22,13 @@ import prettytable import plotly.offline as ploff import plotly.graph_objs as plgo import plotly.exceptions as plerr -import numpy as np import pandas as pd from collections import OrderedDict from datetime import datetime -from utils import split_outliers, archive_input_data, execute_command, Worker +from utils import split_outliers, archive_input_data, execute_command,\ + classify_anomalies, Worker # Command to build the html format of the report @@ -87,61 +87,6 @@ def generate_cpta(spec, data): return ret_code -def _evaluate_results(trimmed_data, window=10): - """Evaluates if the sample value is regress, normal or progress compared to - previous data within the window. - We use the intervals defined as: - - regress: less than trimmed moving median - 3 * stdev - - normal: between trimmed moving median - 3 * stdev and median + 3 * stdev - - progress: more than trimmed moving median + 3 * stdev - where stdev is trimmed moving standard deviation. - - :param trimmed_data: Full data set with the outliers replaced by nan. - :param window: Window size used to calculate moving average and moving stdev. - :type trimmed_data: pandas.Series - :type window: int - :returns: Evaluated results. - :rtype: list - """ - - if len(trimmed_data) > 2: - win_size = trimmed_data.size if trimmed_data.size < window else window - results = [0.66, ] - tmm = trimmed_data.rolling(window=win_size, min_periods=2).median() - tmstd = trimmed_data.rolling(window=win_size, min_periods=2).std() - - first = True - for build_nr, value in trimmed_data.iteritems(): - if first: - first = False - continue - if (np.isnan(value) - or np.isnan(tmm[build_nr]) - or np.isnan(tmstd[build_nr])): - results.append(0.0) - elif value < (tmm[build_nr] - 3 * tmstd[build_nr]): - results.append(0.33) - elif value > (tmm[build_nr] + 3 * tmstd[build_nr]): - results.append(1.0) - else: - results.append(0.66) - else: - results = [0.0, ] - try: - tmm = np.median(trimmed_data) - tmstd = np.std(trimmed_data) - if trimmed_data.values[-1] < (tmm - 3 * tmstd): - results.append(0.33) - elif (tmm - 3 * tmstd) <= trimmed_data.values[-1] <= ( - tmm + 3 * tmstd): - results.append(0.66) - else: - results.append(1.0) - except TypeError: - results.append(None) - return results - - def _generate_trending_traces(in_data, build_info, moving_win_size=10, show_trend_line=True, name="", color=""): """Generate the trending traces: @@ -182,29 +127,27 @@ def _generate_trending_traces(in_data, build_info, moving_win_size=10, t_data, outliers = split_outliers(data_pd, outlier_const=1.5, window=moving_win_size) - results = _evaluate_results(t_data, window=moving_win_size) + anomaly_classification = classify_anomalies(t_data, window=moving_win_size) anomalies = pd.Series() - anomalies_res = list() - for idx, item in enumerate(data_pd.items()): - item_pd = pd.Series([item[1], ], index=[item[0], ]) - if item[0] in outliers.keys(): - anomalies = anomalies.append(item_pd) - anomalies_res.append(0.0) - elif results[idx] in (0.33, 1.0): - anomalies = anomalies.append(item_pd) - anomalies_res.append(results[idx]) - anomalies_res.extend([0.0, 0.33, 0.66, 1.0]) + anomalies_colors = list() + anomaly_color = { + "outlier": 0.0, + "regression": 0.33, + "normal": 0.66, + "progression": 1.0 + } + if anomaly_classification: + for idx, item in enumerate(data_pd.items()): + if anomaly_classification[idx] in \ + ("outlier", "regression", "progression"): + anomalies = anomalies.append(pd.Series([item[1], ], + index=[item[0], ])) + anomalies_colors.append( + anomaly_color[anomaly_classification[idx]]) + anomalies_colors.extend([0.0, 0.33, 0.66, 1.0]) # Create traces - color_scale = [[0.00, "grey"], - [0.25, "grey"], - [0.25, "red"], - [0.50, "red"], - [0.50, "white"], - [0.75, "white"], - [0.75, "green"], - [1.00, "green"]] trace_samples = plgo.Scatter( x=xaxis, @@ -236,8 +179,15 @@ def _generate_trending_traces(in_data, build_info, moving_win_size=10, marker={ "size": 15, "symbol": "circle-open", - "color": anomalies_res, - "colorscale": color_scale, + "color": anomalies_colors, + "colorscale": [[0.00, "grey"], + [0.25, "grey"], + [0.25, "red"], + [0.50, "red"], + [0.50, "white"], + [0.75, "white"], + [0.75, "green"], + [1.00, "green"]], "showscale": True, "line": { "width": 2 @@ -279,7 +229,7 @@ def _generate_trending_traces(in_data, build_info, moving_win_size=10, ) traces.append(trace_trend) - return traces, results[-1] + return traces, anomaly_classification[-1] def _generate_all_charts(spec, input_data): @@ -371,8 +321,6 @@ def _generate_all_charts(spec, input_data): except plerr.PlotlyEmptyDataError: logs.append(("WARNING", "No data for the plot. Skipped.")) - logging.info(" Done.") - data_out = { "csv_table": csv_tbl, "results": res, @@ -419,7 +367,7 @@ def _generate_all_charts(spec, input_data): work_queue.put((chart, )) work_queue.join() - results = list() + anomaly_classifications = list() # Create the header: csv_table = list() @@ -435,7 +383,7 @@ def _generate_all_charts(spec, input_data): while not data_queue.empty(): result = data_queue.get() - results.extend(result["results"]) + anomaly_classifications.extend(result["results"]) csv_table.extend(result["csv_table"]) for item in result["logs"]: @@ -487,17 +435,16 @@ def _generate_all_charts(spec, input_data): txt_file.write(str(txt_table)) # Evaluate result: - result = "PASS" - for item in results: - if item is None: - result = "FAIL" - break - if item == 0.66 and result == "PASS": - result = "PASS" - elif item == 0.33 or item == 0.0: - result = "FAIL" - - logging.info("Partial results: {0}".format(results)) + if anomaly_classifications: + result = "PASS" + for classification in anomaly_classifications: + if classification == "regression" or classification == "outlier": + result = "FAIL" + break + else: + result = "FAIL" + + logging.info("Partial results: {0}".format(anomaly_classifications)) logging.info("Result: {0}".format(result)) return result diff --git a/resources/tools/presentation/generator_tables.py b/resources/tools/presentation/generator_tables.py index 5246952e20..84a6a411dc 100644 --- a/resources/tools/presentation/generator_tables.py +++ b/resources/tools/presentation/generator_tables.py @@ -26,7 +26,8 @@ from numpy import nan, isnan from xml.etree import ElementTree as ET from errors import PresentationError -from utils import mean, stdev, relative_change, remove_outliers, split_outliers +from utils import mean, stdev, relative_change, remove_outliers,\ + split_outliers, classify_anomalies def generate_tables(spec, data): @@ -774,60 +775,50 @@ def table_performance_trending_dashboard(table, input_data): tbl_lst = list() for tst_name in tbl_dict.keys(): - if len(tbl_dict[tst_name]["data"]) > 2: - - pd_data = pd.Series(tbl_dict[tst_name]["data"]) - data_t, _ = split_outliers(pd_data, outlier_const=1.5, - window=table["window"]) - last_key = data_t.keys()[-1] - win_size = min(data_t.size, table["window"]) - win_first_idx = data_t.size - win_size - key_14 = data_t.keys()[win_first_idx] - long_win_size = min(data_t.size, table["long-trend-window"]) - median_t = data_t.rolling(window=win_size, min_periods=2).median() - stdev_t = data_t.rolling(window=win_size, min_periods=2).std() - median_first_idx = median_t.size - long_win_size - try: - max_median = max( - [x for x in median_t.values[median_first_idx:-win_size] - if not isnan(x)]) - except ValueError: - max_median = nan - try: - last_median_t = median_t[last_key] - except KeyError: - last_median_t = nan - try: - median_t_14 = median_t[key_14] - except KeyError: - median_t_14 = nan - - # Classification list: - classification_lst = list() - for build_nr, value in data_t.iteritems(): - if isnan(median_t[build_nr]) \ - or isnan(stdev_t[build_nr]) \ - or isnan(value): - classification_lst.append("outlier") - elif value < (median_t[build_nr] - 3 * stdev_t[build_nr]): - classification_lst.append("regression") - elif value > (median_t[build_nr] + 3 * stdev_t[build_nr]): - classification_lst.append("progression") - else: - classification_lst.append("normal") + if len(tbl_dict[tst_name]["data"]) < 3: + continue + + pd_data = pd.Series(tbl_dict[tst_name]["data"]) + data_t, _ = split_outliers(pd_data, outlier_const=1.5, + window=table["window"]) + last_key = data_t.keys()[-1] + win_size = min(data_t.size, table["window"]) + win_first_idx = data_t.size - win_size + key_14 = data_t.keys()[win_first_idx] + long_win_size = min(data_t.size, table["long-trend-window"]) + median_t = data_t.rolling(window=win_size, min_periods=2).median() + median_first_idx = median_t.size - long_win_size + try: + max_median = max( + [x for x in median_t.values[median_first_idx:-win_size] + if not isnan(x)]) + except ValueError: + max_median = nan + try: + last_median_t = median_t[last_key] + except KeyError: + last_median_t = nan + try: + median_t_14 = median_t[key_14] + except KeyError: + median_t_14 = nan - if isnan(last_median_t) or isnan(median_t_14) or median_t_14 == 0.0: - rel_change_last = nan - else: - rel_change_last = round( - ((last_median_t - median_t_14) / median_t_14) * 100, 2) + if isnan(last_median_t) or isnan(median_t_14) or median_t_14 == 0.0: + rel_change_last = nan + else: + rel_change_last = round( + ((last_median_t - median_t_14) / median_t_14) * 100, 2) - if isnan(max_median) or isnan(last_median_t) or max_median == 0.0: - rel_change_long = nan - else: - rel_change_long = round( - ((last_median_t - max_median) / max_median) * 100, 2) + if isnan(max_median) or isnan(last_median_t) or max_median == 0.0: + rel_change_long = nan + else: + rel_change_long = round( + ((last_median_t - max_median) / max_median) * 100, 2) + + # Classification list: + classification_lst = classify_anomalies(data_t, window=14) + if classification_lst: tbl_lst.append( [tbl_dict[tst_name]["name"], '-' if isnan(last_median_t) else @@ -976,7 +967,7 @@ def table_performance_trending_dashboard_html(table, input_data): if "64b" in item: anchor += "64b-" elif "78b" in item: - anchor += "78b" + anchor += "78b-" elif "imix" in item: anchor += "imix-" elif "9000b" in item: diff --git a/resources/tools/presentation/specification_CPTA.yaml b/resources/tools/presentation/specification_CPTA.yaml index 5200a446a6..1937a53735 100644 --- a/resources/tools/presentation/specification_CPTA.yaml +++ b/resources/tools/presentation/specification_CPTA.yaml @@ -615,7 +615,7 @@ - title: "VPP 1T1C IPv6 78B Packet Throughput - Trending" output-file-name: "ip6-1t1c-x520" data: "plot-performance-trending" - filter: "'NIC_Intel-X520-DA2' and 'MRR' and '78B' and ('BASE' or 'SCALE' or 'FEATURE') and '1T1C' and 'IP6FWD' and not 'IPSEC' and not 'VHOST'" + filter: "'NIC_Intel-X520-DA2' and 'MRR' and '78B' and ('BASE' or 'SCALE' or 'FEATURE') and '1T1C' and 'IP6FWD' and not 'IPSEC' and not 'VHOST' and not 'SRv6'" parameters: - "result" layout: "plot-cpta" @@ -623,7 +623,7 @@ - title: "VPP 2T2C IPv6 78B Packet Throughput - Trending" output-file-name: "ip6-2t2c-x520" data: "plot-performance-trending" - filter: "'NIC_Intel-X520-DA2' and 'MRR' and '78B' and ('BASE' or 'SCALE' or 'FEATURE') and '2T2C' and 'IP6FWD' and not 'IPSEC' and not 'VHOST'" + filter: "'NIC_Intel-X520-DA2' and 'MRR' and '78B' and ('BASE' or 'SCALE' or 'FEATURE') and '2T2C' and 'IP6FWD' and not 'IPSEC' and not 'VHOST' and not 'SRv6'" parameters: - "result" layout: "plot-cpta" @@ -631,7 +631,7 @@ - title: "VPP 4T4C IPv6 78B Packet Throughput - Trending" output-file-name: "ip6-4t4c-x520" data: "plot-performance-trending" - filter: "'NIC_Intel-X520-DA2' and 'MRR' and '78B' and ('BASE' or 'SCALE' or 'FEATURE') and '4T4C' and 'IP6FWD' and not 'IPSEC' and not 'VHOST'" + filter: "'NIC_Intel-X520-DA2' and 'MRR' and '78B' and ('BASE' or 'SCALE' or 'FEATURE') and '4T4C' and 'IP6FWD' and not 'IPSEC' and not 'VHOST' and not 'SRv6'" parameters: - "result" layout: "plot-cpta" diff --git a/resources/tools/presentation/utils.py b/resources/tools/presentation/utils.py index f32019dc2e..0a9d985a88 100644 --- a/resources/tools/presentation/utils.py +++ b/resources/tools/presentation/utils.py @@ -274,6 +274,48 @@ def archive_input_data(spec): logging.info(" Done.") +def classify_anomalies(data, window): + """Evaluates if the sample value is an outlier, regression, normal or + progression compared to the previous data within the window. + We use the intervals defined as: + - regress: less than trimmed moving median - 3 * stdev + - normal: between trimmed moving median - 3 * stdev and median + 3 * stdev + - progress: more than trimmed moving median + 3 * stdev + where stdev is trimmed moving standard deviation. + + :param data: Full data set with the outliers replaced by nan. + :param window: Window size used to calculate moving average and moving + stdev. + :type data: pandas.Series + :type window: int + :returns: Evaluated results. + :rtype: list + """ + + if data.size < 3: + return None + + win_size = data.size if data.size < window else window + tmm = data.rolling(window=win_size, min_periods=2).median() + tmstd = data.rolling(window=win_size, min_periods=2).std() + + classification = ["normal", ] + first = True + for build, value in data.iteritems(): + if first: + first = False + continue + if np.isnan(value) or np.isnan(tmm[build]) or np.isnan(tmstd[build]): + classification.append("outlier") + elif value < (tmm[build] - 3 * tmstd[build]): + classification.append("regression") + elif value > (tmm[build] + 3 * tmstd[build]): + classification.append("progression") + else: + classification.append("normal") + return classification + + class Worker(multiprocessing.Process): """Worker class used to process tasks in separate parallel processes. """ |