aboutsummaryrefslogtreecommitdiffstats
path: root/csit.infra.dash/app/cdash/comparisons/layout.py
diff options
context:
space:
mode:
Diffstat (limited to 'csit.infra.dash/app/cdash/comparisons/layout.py')
-rw-r--r--csit.infra.dash/app/cdash/comparisons/layout.py98
1 files changed, 65 insertions, 33 deletions
diff --git a/csit.infra.dash/app/cdash/comparisons/layout.py b/csit.infra.dash/app/cdash/comparisons/layout.py
index 489e6ebc6a..452afad1af 100644
--- a/csit.infra.dash/app/cdash/comparisons/layout.py
+++ b/csit.infra.dash/app/cdash/comparisons/layout.py
@@ -29,7 +29,7 @@ from ..utils.control_panel import ControlPanel
from ..utils.trigger import Trigger
from ..utils.url_processing import url_decode
from ..utils.utils import generate_options, gen_new_url
-from .tables import comparison_table
+from .tables import comparison_table, filter_table_data
# Control panel partameters and their default values.
@@ -204,6 +204,8 @@ class Layout:
children=[
dcc.Store(id="store-control-panel"),
dcc.Store(id="store-selected"),
+ dcc.Store(id="store-table-data"),
+ dcc.Store(id="store-filtered-table-data"),
dcc.Location(id="url", refresh=False),
self._add_ctrl_col(),
self._add_plotting_col()
@@ -505,28 +507,26 @@ class Layout:
)
]
+ @staticmethod
def _get_plotting_area(
- self,
- selected: dict,
- url: str,
- normalize: bool
+ title: str,
+ table: pd.DataFrame,
+ url: str
) -> list:
"""Generate the plotting area with all its content.
- :param selected: Selected parameters of tests.
- :param normalize: If true, the values in tables are normalized.
+ :param title: The title of the comparison table..
+ :param table: Comparison table to be displayed.
:param url: URL to be displayed in the modal window.
- :type selected: dict
- :type normalize: bool
+ :type title: str
+ :type table: pandas.DataFrame
:type url: str
:returns: List of rows with elements to be displayed in the plotting
area.
:rtype: list
"""
- title, df = comparison_table(self._data, selected, normalize)
-
- if df.empty:
+ if table.empty:
return dbc.Row(
dbc.Col(
children=dbc.Alert(
@@ -539,7 +539,7 @@ class Layout:
)
cols = list()
- for idx, col in enumerate(df.columns):
+ for idx, col in enumerate(table.columns):
if idx == 0:
cols.append({
"name": ["", col],
@@ -568,11 +568,13 @@ class Layout:
children=[
dbc.Col(
children=dash_table.DataTable(
+ id={"type": "table", "index": "comparison"},
columns=cols,
- data=df.to_dict("records"),
+ data=table.to_dict("records"),
merge_duplicate_headers=True,
- editable=True,
- filter_action="native",
+ editable=False,
+ filter_action="custom",
+ filter_query="",
sort_action="native",
sort_mode="multi",
selected_columns=[],
@@ -648,7 +650,10 @@ class Layout:
[
Output("store-control-panel", "data"),
Output("store-selected", "data"),
+ Output("store-table-data", "data"),
+ Output("store-filtered-table-data", "data"),
Output("plotting-area", "children"),
+ Output({"type": "table", "index": ALL}, "data"),
Output({"type": "ctrl-dd", "index": "dut"}, "value"),
Output({"type": "ctrl-dd", "index": "dutver"}, "options"),
Output({"type": "ctrl-dd", "index": "dutver"}, "disabled"),
@@ -672,11 +677,13 @@ class Layout:
],
[
State("store-control-panel", "data"),
- State("store-selected", "data")
+ State("store-selected", "data"),
+ State("store-table-data", "data")
],
[
Input("url", "href"),
Input("normalize", "value"),
+ Input({"type": "table", "index": ALL}, "filter_query"),
Input({"type": "ctrl-dd", "index": ALL}, "value"),
Input({"type": "ctrl-cl", "index": ALL}, "value"),
Input({"type": "ctrl-btn", "index": ALL}, "n_clicks")
@@ -685,8 +692,10 @@ class Layout:
def _update_application(
control_panel: dict,
selected: dict,
+ store_table_data: list,
href: str,
normalize: list,
+ table_filter: str,
*_
) -> tuple:
"""Update the application when the event is detected.
@@ -713,6 +722,8 @@ class Layout:
on_draw = False
plotting_area = no_update
+ table_data = list()
+ filtered_data = None
trigger = Trigger(callback_context.triggered)
if trigger.type == "url" and url_params:
@@ -934,19 +945,35 @@ class Layout:
"cmp-val-dis": True,
"cmp-val-val": str()
})
+ elif trigger.type == "table" and trigger.idx == "comparison":
+ table_data = filter_table_data(
+ store_table_data,
+ table_filter[0]
+ )
+ filtered_data = table_data
+ table_data = [table_data, ]
if all((on_draw, selected["reference"]["set"],
selected["compare"]["set"], )):
+ title, table = comparison_table(self._data, selected, normalize)
plotting_area = self._get_plotting_area(
- selected=selected,
- normalize=bool(normalize),
+ title=title,
+ table=table,
url=gen_new_url(
parsed_url,
params={"selected": selected, "norm": normalize}
)
)
-
- ret_val = [ctrl_panel.panel, selected, plotting_area]
+ store_table_data = table.to_dict("records")
+
+ ret_val = [
+ ctrl_panel.panel,
+ selected,
+ store_table_data,
+ filtered_data,
+ plotting_area,
+ table_data
+ ]
ret_val.extend(ctrl_panel.values)
return ret_val
@@ -964,28 +991,33 @@ class Layout:
@app.callback(
Output("download-iterative-data", "data"),
- State("store-selected", "data"),
- State("normalize", "value"),
+ State("store-table-data", "data"),
+ State("store-filtered-table-data", "data"),
Input("plot-btn-download", "n_clicks"),
prevent_initial_call=True
)
- def _download_trending_data(selected: dict, normalize: list, _: int):
+ def _download_comparison_data(
+ table_data: list,
+ filtered_table_data: list,
+ _: int
+ ) -> dict:
"""Download the data.
- :param selected: List of tests selected by user stored in the
- browser.
- :param normalize: If set, the data is normalized to 2GHz CPU
- frequency.
- :type selected: list
- :type normalize: list
+ :param table_data: Original unfiltered table data.
+ :param filtered_table_data: Filtered table data.
+ :type table_data: list
+ :type filtered_table_data: list
:returns: dict of data frame content (base64 encoded) and meta data
used by the Download component.
:rtype: dict
"""
- if not selected:
+ if not table_data:
raise PreventUpdate
-
- _, table = comparison_table(self._data, selected, normalize, "csv")
+
+ if filtered_table_data:
+ table = pd.DataFrame.from_records(filtered_table_data)
+ else:
+ table = pd.DataFrame.from_records(table_data)
return dcc.send_data_frame(table.to_csv, C.COMP_DOWNLOAD_FILE_NAME)