aboutsummaryrefslogtreecommitdiffstats
path: root/csit.infra.dash/app/cdash/comparisons/tables.py
diff options
context:
space:
mode:
Diffstat (limited to 'csit.infra.dash/app/cdash/comparisons/tables.py')
-rw-r--r--csit.infra.dash/app/cdash/comparisons/tables.py283
1 files changed, 283 insertions, 0 deletions
diff --git a/csit.infra.dash/app/cdash/comparisons/tables.py b/csit.infra.dash/app/cdash/comparisons/tables.py
new file mode 100644
index 0000000000..14d5d552af
--- /dev/null
+++ b/csit.infra.dash/app/cdash/comparisons/tables.py
@@ -0,0 +1,283 @@
+# Copyright (c) 2023 Cisco and/or its affiliates.
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at:
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+"""The comparison tables.
+"""
+
+import pandas as pd
+
+from numpy import mean, std
+from copy import deepcopy
+from ..utils.constants import Constants as C
+from ..utils.utils import relative_change_stdev
+
+
+def select_comparison_data(
+ data: pd.DataFrame,
+ selected: dict,
+ normalize: bool=False
+ ) -> pd.DataFrame:
+ """Select data for a comparison table.
+
+ :param data: Data to be filtered for the comparison table.
+ :param selected: A dictionary with parameters and their values selected by
+ the user.
+ :param normalize: If True, the data is normalized to CPU frequency
+ Constants.NORM_FREQUENCY.
+ :type data: pandas.DataFrame
+ :type selected: dict
+ :type normalize: bool
+ :returns: A data frame with selected data.
+ :rtype: pandas.DataFrame
+ """
+
+ def _calculate_statistics(
+ data_in: pd.DataFrame,
+ ttype: str,
+ drv: str,
+ norm_factor: float
+ ) -> pd.DataFrame:
+ """Calculates mean value and standard deviation for provided data.
+
+ :param data_in: Input data for calculations.
+ :param ttype: The test type.
+ :param drv: The driver.
+ :param norm_factor: The data normalization factor.
+ :type data_in: pandas.DataFrame
+ :type ttype: str
+ :type drv: str
+ :type norm_factor: float
+ :returns: A pandas dataframe with: test name, mean value, standard
+ deviation and unit.
+ :rtype: pandas.DataFrame
+ """
+ d_data = {
+ "name": list(),
+ "mean": list(),
+ "stdev": list(),
+ "unit": list()
+ }
+ for itm in data_in["test_id"].unique().tolist():
+ itm_lst = itm.split(".")
+ test = itm_lst[-1].rsplit("-", 1)[0]
+ df = data_in.loc[(data_in["test_id"] == itm)]
+ l_df = df[C.VALUE_ITER[ttype]].to_list()
+ if len(l_df) and isinstance(l_df[0], list):
+ tmp_df = list()
+ for l_itm in l_df:
+ tmp_df.extend(l_itm)
+ l_df = tmp_df
+ d_data["name"].append(f"{test.replace(f'{drv}-', '')}-{ttype}")
+ d_data["mean"].append(int(mean(l_df) * norm_factor))
+ d_data["stdev"].append(int(std(l_df) * norm_factor))
+ d_data["unit"].append(df[C.UNIT[ttype]].to_list()[0])
+ return pd.DataFrame(d_data)
+
+ lst_df = list()
+ for itm in selected:
+ if itm["ttype"] in ("NDR", "PDR"):
+ test_type = "ndrpdr"
+ else:
+ test_type = itm["ttype"].lower()
+
+ dutver = itm["dutver"].split("-", 1) # 0 -> release, 1 -> dut version
+ tmp_df = pd.DataFrame(data.loc[(
+ (data["passed"] == True) &
+ (data["dut_type"] == itm["dut"]) &
+ (data["dut_version"] == dutver[1]) &
+ (data["test_type"] == test_type) &
+ (data["release"] == dutver[0])
+ )])
+
+ drv = "" if itm["driver"] == "dpdk" else itm["driver"].replace("_", "-")
+ core = str() if itm["dut"] == "trex" else itm["core"].lower()
+ reg_id = \
+ f"^.*[.|-]{itm['nic']}.*{itm['frmsize'].lower()}-{core}-{drv}.*$"
+ tmp_df = tmp_df[
+ (tmp_df.job.str.endswith(itm["tbed"])) &
+ (tmp_df.test_id.str.contains(reg_id, regex=True))
+ ]
+ if itm["driver"] == "dpdk":
+ for drv in C.DRIVERS:
+ tmp_df.drop(
+ tmp_df[tmp_df.test_id.str.contains(f"-{drv}-")].index,
+ inplace=True
+ )
+
+ # Change the data type from ndrpdr to one of ("NDR", "PDR")
+ if test_type == "ndrpdr":
+ tmp_df = tmp_df.assign(test_type=itm["ttype"].lower())
+
+ if not tmp_df.empty:
+ tmp_df = _calculate_statistics(
+ tmp_df,
+ itm["ttype"].lower(),
+ itm["driver"],
+ C.NORM_FREQUENCY / C.FREQUENCY[itm["tbed"]] if normalize else 1
+ )
+
+ lst_df.append(tmp_df)
+
+ if len(lst_df) == 1:
+ df = lst_df[0]
+ elif len(lst_df) > 1:
+ df = pd.concat(
+ lst_df,
+ ignore_index=True,
+ copy=False
+ )
+ else:
+ df = pd.DataFrame()
+
+ return df
+
+
+def comparison_table(
+ data: pd.DataFrame,
+ selected: dict,
+ normalize: bool,
+ format: str="html"
+ ) -> tuple:
+ """Generate a comparison table.
+
+ :param data: Iterative data for the comparison table.
+ :param selected: A dictionary with parameters and their values selected by
+ the user.
+ :param normalize: If True, the data is normalized to CPU frequency
+ Constants.NORM_FREQUENCY.
+ :param format: The output format of the table:
+ - html: To be displayed on html page, the values are shown in millions
+ of the unit.
+ - csv: To be downloaded as a CSV file the values are stored in base
+ units.
+ :type data: pandas.DataFrame
+ :type selected: dict
+ :type normalize: bool
+ :type format: str
+ :returns: A tuple with the tabe title and the comparison table.
+ :rtype: tuple[str, pandas.DataFrame]
+ """
+
+ def _create_selection(sel: dict) -> list:
+ """Transform the complex dictionary with user selection to list
+ of simple items.
+
+ :param sel: A complex dictionary with user selection.
+ :type sel: dict
+ :returns: A list of simple items.
+ :rtype: list
+ """
+ l_infra = sel["infra"].split("-")
+ selection = list()
+ for core in sel["core"]:
+ for fsize in sel["frmsize"]:
+ for ttype in sel["ttype"]:
+ selection.append({
+ "dut": sel["dut"],
+ "dutver": sel["dutver"],
+ "tbed": f"{l_infra[0]}-{l_infra[1]}",
+ "nic": l_infra[2],
+ "driver": l_infra[-1].replace("_", "-"),
+ "core": core,
+ "frmsize": fsize,
+ "ttype": ttype
+ })
+ return selection
+
+ unit_factor, s_unit_factor = (1e6, "M") if format == "html" else (1, str())
+
+ r_sel = deepcopy(selected["reference"]["selection"])
+ c_params = selected["compare"]
+ r_selection = _create_selection(r_sel)
+
+ # Create Table title and titles of columns with data
+ params = list(r_sel)
+ params.remove(c_params["parameter"])
+ lst_title = list()
+ for param in params:
+ value = r_sel[param]
+ if isinstance(value, list):
+ lst_title.append("|".join(value))
+ else:
+ lst_title.append(value)
+ title = "Comparison for: " + "-".join(lst_title)
+ r_name = r_sel[c_params["parameter"]]
+ if isinstance(r_name, list):
+ r_name = "|".join(r_name)
+ c_name = c_params["value"]
+
+ # Select reference data
+ r_data = select_comparison_data(data, r_selection, normalize)
+
+ # Select compare data
+ c_sel = deepcopy(selected["reference"]["selection"])
+ if c_params["parameter"] in ("core", "frmsize", "ttype"):
+ c_sel[c_params["parameter"]] = [c_params["value"], ]
+ else:
+ c_sel[c_params["parameter"]] = c_params["value"]
+
+ c_selection = _create_selection(c_sel)
+ c_data = select_comparison_data(data, c_selection, normalize)
+
+ if r_data.empty or c_data.empty:
+ return str(), pd.DataFrame()
+
+ l_name, l_r_mean, l_r_std, l_c_mean, l_c_std, l_rc_mean, l_rc_std, unit = \
+ list(), list(), list(), list(), list(), list(), list(), set()
+ for _, row in r_data.iterrows():
+ if c_params["parameter"] in ("core", "frmsize", "ttype"):
+ l_cmp = row["name"].split("-")
+ if c_params["parameter"] == "core":
+ c_row = c_data[
+ (c_data.name.str.contains(l_cmp[0])) &
+ (c_data.name.str.contains("-".join(l_cmp[2:])))
+ ]
+ elif c_params["parameter"] == "frmsize":
+ c_row = c_data[c_data.name.str.contains("-".join(l_cmp[1:]))]
+ elif c_params["parameter"] == "ttype":
+ regex = r"^" + f"{'-'.join(l_cmp[:-1])}" + r"-.{3}$"
+ c_row = c_data[c_data.name.str.contains(regex, regex=True)]
+ else:
+ c_row = c_data[c_data["name"] == row["name"]]
+ if not c_row.empty:
+ unit.add(f"{s_unit_factor}{row['unit']}")
+ r_mean = row["mean"]
+ r_std = row["stdev"]
+ c_mean = c_row["mean"].values[0]
+ c_std = c_row["stdev"].values[0]
+ l_name.append(row["name"])
+ l_r_mean.append(r_mean / unit_factor)
+ l_r_std.append(r_std / unit_factor)
+ l_c_mean.append(c_mean / unit_factor)
+ l_c_std.append(c_std / unit_factor)
+ delta, d_stdev = relative_change_stdev(r_mean, c_mean, r_std, c_std)
+ l_rc_mean.append(delta)
+ l_rc_std.append(d_stdev)
+
+ s_unit = "|".join(unit)
+ df_cmp = pd.DataFrame.from_dict({
+ "Test Name": l_name,
+ f"{r_name} Mean [{s_unit}]": l_r_mean,
+ f"{r_name} Stdev [{s_unit}]": l_r_std,
+ f"{c_name} Mean [{s_unit}]": l_c_mean,
+ f"{c_name} Stdev [{s_unit}]": l_c_std,
+ "Relative Change Mean [%]": l_rc_mean,
+ "Relative Change Stdev [%]": l_rc_std
+ })
+ df_cmp.sort_values(
+ by="Relative Change Mean [%]",
+ ascending=False,
+ inplace=True
+ )
+
+ return (title, df_cmp)