aboutsummaryrefslogtreecommitdiffstats
path: root/csit.infra.dash/app/cdash/comparisons/tables.py
diff options
context:
space:
mode:
Diffstat (limited to 'csit.infra.dash/app/cdash/comparisons/tables.py')
-rw-r--r--csit.infra.dash/app/cdash/comparisons/tables.py68
1 files changed, 42 insertions, 26 deletions
diff --git a/csit.infra.dash/app/cdash/comparisons/tables.py b/csit.infra.dash/app/cdash/comparisons/tables.py
index 0c247e87c2..18f9404f0a 100644
--- a/csit.infra.dash/app/cdash/comparisons/tables.py
+++ b/csit.infra.dash/app/cdash/comparisons/tables.py
@@ -27,7 +27,8 @@ def select_comp_data(
data: pd.DataFrame,
selected: dict,
normalize: bool=False,
- remove_outliers: bool=False
+ remove_outliers: bool=False,
+ raw_data: bool=False
) -> pd.DataFrame:
"""Select data for a comparison table.
@@ -38,10 +39,13 @@ def select_comp_data(
Constants.NORM_FREQUENCY.
:param remove_outliers: If True the outliers are removed before
generating the table.
+ :param raw_data: If True, returns data as it is in parquets without any
+ processing. It is used for "download raw data" feature.
:type data: pandas.DataFrame
:type selected: dict
:type normalize: bool
:type remove_outliers: bool
+ :type raw_data: bool
:returns: A data frame with selected data.
:rtype: pandas.DataFrame
"""
@@ -161,13 +165,14 @@ def select_comp_data(
norm_factor = C.NORM_FREQUENCY / C.FREQUENCY[itm["tbed"]]
else:
norm_factor = 1.0
- tmp_df = _calculate_statistics(
- tmp_df,
- itm["ttype"].lower(),
- itm["driver"],
- norm_factor,
- remove_outliers=remove_outliers
- )
+ if not raw_data:
+ tmp_df = _calculate_statistics(
+ tmp_df,
+ itm["ttype"].lower(),
+ itm["driver"],
+ norm_factor,
+ remove_outliers=remove_outliers
+ )
lst_df.append(tmp_df)
@@ -190,7 +195,8 @@ def comparison_table(
selected: dict,
normalize: bool,
format: str="html",
- remove_outliers: bool=False
+ remove_outliers: bool=False,
+ raw_data: bool=False
) -> tuple:
"""Generate a comparison table.
@@ -206,11 +212,14 @@ def comparison_table(
units.
:param remove_outliers: If True the outliers are removed before
generating the table.
+ :param raw_data: If True, returns data as it is in parquets without any
+ processing. It is used for "download raw data" feature.
:type data: pandas.DataFrame
:type selected: dict
:type normalize: bool
:type format: str
:type remove_outliers: bool
+ :type raw_data: bool
:returns: A tuple with the tabe title and the comparison table.
:rtype: tuple[str, pandas.DataFrame]
"""
@@ -241,9 +250,32 @@ def comparison_table(
})
return selection
+ # Select reference data
r_sel = deepcopy(selected["reference"]["selection"])
- c_params = selected["compare"]
r_selection = _create_selection(r_sel)
+ r_data = select_comp_data(
+ data, r_selection, normalize, remove_outliers, raw_data
+ )
+
+ # Select compare data
+ c_sel = deepcopy(selected["reference"]["selection"])
+ c_params = selected["compare"]
+ if c_params["parameter"] in ("core", "frmsize", "ttype"):
+ c_sel[c_params["parameter"]] = [c_params["value"], ]
+ else:
+ c_sel[c_params["parameter"]] = c_params["value"]
+ c_selection = _create_selection(c_sel)
+ c_data = select_comp_data(
+ data, c_selection, normalize, remove_outliers, raw_data
+ )
+
+ if raw_data:
+ r_data["ref/cmp"] = "reference"
+ c_data["ref/cmp"] = "compare"
+ return str(), pd.concat([r_data, c_data], ignore_index=True, copy=False)
+
+ if r_data.empty or c_data.empty:
+ return str(), pd.DataFrame()
if format == "html" and "Latency" not in r_sel["ttype"]:
unit_factor, s_unit_factor = (1e6, "M")
@@ -266,22 +298,6 @@ def comparison_table(
r_name = "|".join(r_name)
c_name = c_params["value"]
- # Select reference data
- r_data = select_comp_data(data, r_selection, normalize, remove_outliers)
-
- # Select compare data
- c_sel = deepcopy(selected["reference"]["selection"])
- if c_params["parameter"] in ("core", "frmsize", "ttype"):
- c_sel[c_params["parameter"]] = [c_params["value"], ]
- else:
- c_sel[c_params["parameter"]] = c_params["value"]
-
- c_selection = _create_selection(c_sel)
- c_data = select_comp_data(data, c_selection, normalize, remove_outliers)
-
- if r_data.empty or c_data.empty:
- return str(), pd.DataFrame()
-
l_name, l_r_mean, l_r_std, l_c_mean, l_c_std, l_rc_mean, l_rc_std, unit = \
list(), list(), list(), list(), list(), list(), list(), set()
for _, row in r_data.iterrows():