aboutsummaryrefslogtreecommitdiffstats
path: root/csit.infra.dash/app/cdash/coverage/tables.py
diff options
context:
space:
mode:
Diffstat (limited to 'csit.infra.dash/app/cdash/coverage/tables.py')
-rw-r--r--csit.infra.dash/app/cdash/coverage/tables.py55
1 files changed, 47 insertions, 8 deletions
diff --git a/csit.infra.dash/app/cdash/coverage/tables.py b/csit.infra.dash/app/cdash/coverage/tables.py
index f2fa90ffb2..372a8206bf 100644
--- a/csit.infra.dash/app/cdash/coverage/tables.py
+++ b/csit.infra.dash/app/cdash/coverage/tables.py
@@ -14,6 +14,7 @@
"""The coverage data tables.
"""
+
import hdrh.histogram
import hdrh.codec
import pandas as pd
@@ -54,7 +55,7 @@ def select_coverage_data(
phy = selected["phy"].split("-")
if len(phy) == 4:
topo, arch, nic, drv = phy
- drv = "" if drv == "dpdk" else drv.replace("_", "-")
+ drv_str = "" if drv == "dpdk" else drv.replace("_", "-")
else:
return l_data
@@ -67,7 +68,7 @@ def select_coverage_data(
df = df[
(df.job.str.endswith(f"{topo}-{arch}")) &
(df.test_id.str.contains(
- f"^.*\.{selected['area']}\..*{nic}.*{drv}.*$",
+ f"^.*\.{selected['area']}\..*{nic}.*{drv_str}.*$",
regex=True
))
]
@@ -115,7 +116,15 @@ def select_coverage_data(
if ttype == "device":
cov = cov.assign(Result="PASS")
- else:
+ elif ttype == "mrr":
+ cov["Throughput_Unit"] = df["result_receive_rate_rate_unit"]
+ cov["Throughput_AVG"] = df.apply(
+ lambda row: row["result_receive_rate_rate_avg"] / 1e9, axis=1
+ )
+ cov["Throughput_STDEV"] = df.apply(
+ lambda row: row["result_receive_rate_rate_stdev"] / 1e9, axis=1
+ )
+ else: # NDRPDR
cov["Throughput_Unit"] = df["result_pdr_lower_rate_unit"]
cov["Throughput_NDR"] = df.apply(
lambda row: row["result_ndr_lower_rate_value"] / 1e6, axis=1
@@ -152,7 +161,9 @@ def select_coverage_data(
df_suite.rename(
columns={
"Throughput_NDR": f"Throughput_NDR_M{unit}",
- "Throughput_PDR": f"Throughput_PDR_M{unit}"
+ "Throughput_PDR": f"Throughput_PDR_M{unit}",
+ "Throughput_AVG": f"Throughput_G{unit}_AVG",
+ "Throughput_STDEV": f"Throughput_G{unit}_STDEV"
},
inplace=True
)
@@ -160,7 +171,7 @@ def select_coverage_data(
l_data.append((suite, df_suite, ))
- return l_data
+ return l_data, ttype
def coverage_tables(
@@ -181,9 +192,10 @@ def coverage_tables(
"""
accordion_items = list()
- sel_data = select_coverage_data(data, selected, show_latency=show_latency)
+ sel_data, ttype = \
+ select_coverage_data(data, selected, show_latency=show_latency)
for suite, cov_data in sel_data:
- if len(cov_data.columns) == 3: # VPP Device
+ if ttype == "device": # VPP Device
cols = [
{
"name": col,
@@ -200,7 +212,34 @@ def coverage_tables(
"textAlign": "right"
}
]
- else: # Performance
+ elif ttype == "mrr": # MRR
+ cols = list()
+ for idx, col in enumerate(cov_data.columns):
+ if idx == 0:
+ cols.append({
+ "name": ["", "", col],
+ "id": col,
+ "deletable": False,
+ "selectable": False,
+ "type": "text"
+ })
+ else:
+ cols.append({
+ "name": col.split("_"),
+ "id": col,
+ "deletable": False,
+ "selectable": False,
+ "type": "numeric",
+ "format": Format(precision=2, scheme=Scheme.fixed)
+ })
+ style_cell={"textAlign": "right"}
+ style_cell_conditional=[
+ {
+ "if": {"column_id": "Test Name"},
+ "textAlign": "left"
+ }
+ ]
+ else: # Performance NDRPDR
cols = list()
for idx, col in enumerate(cov_data.columns):
if idx == 0: