diff options
Diffstat (limited to 'csit.infra.dash/app/cdash/data/data.py')
-rw-r--r-- | csit.infra.dash/app/cdash/data/data.py | 214 |
1 files changed, 166 insertions, 48 deletions
diff --git a/csit.infra.dash/app/cdash/data/data.py b/csit.infra.dash/app/cdash/data/data.py index a0d698e2b0..2bf3649778 100644 --- a/csit.infra.dash/app/cdash/data/data.py +++ b/csit.infra.dash/app/cdash/data/data.py @@ -18,12 +18,16 @@ import logging import resource import awswrangler as wr import pandas as pd +import pyarrow as pa from yaml import load, FullLoader, YAMLError from datetime import datetime, timedelta from time import time from pytz import UTC from awswrangler.exceptions import EmptyDataFrame, NoFilesFound +from pyarrow.lib import ArrowInvalid, ArrowNotImplementedError + +from ..utils.constants import Constants as C class Data: @@ -118,14 +122,117 @@ class Data: return file_list + def _validate_columns(self, data_type: str) -> str: + """Check if all columns are present in the dataframe. + + :param data_type: The data type defined in data.yaml + :type data_type: str + :returns: Error message if validation fails, otherwise empty string. + :rtype: str + """ + defined_columns = set() + for data_set in self._data_spec: + if data_set.get("data_type", str()) == data_type: + defined_columns.update(data_set.get("columns", set())) + + if not defined_columns: + return "No columns defined in the data set(s)." + + if self.data[data_type].empty: + return "No data." + + ret_msg = str() + for col in defined_columns: + if col not in self.data[data_type].columns: + if not ret_msg: + ret_msg = "Missing columns: " + else: + ret_msg += ", " + ret_msg += f"{col}" + return ret_msg + @staticmethod - def _create_dataframe_from_parquet( - path, partition_filter=None, + def _write_parquet_schema( + path, + partition_filter=None, columns=None, validate_schema=False, last_modified_begin=None, last_modified_end=None, days=None + ) -> None: + """Auxiliary function to write parquet schemas. Use it instead of + "_create_dataframe_from_parquet" in "read_all_data". + + :param path: S3 prefix (accepts Unix shell-style wildcards) + (e.g. s3://bucket/prefix) or list of S3 objects paths + (e.g. [s3://bucket/key0, s3://bucket/key1]). + :param partition_filter: Callback Function filters to apply on PARTITION + columns (PUSH-DOWN filter). This function MUST receive a single + argument (Dict[str, str]) where keys are partitions names and values + are partitions values. Partitions values will be always strings + extracted from S3. This function MUST return a bool, True to read + the partition or False to ignore it. Ignored if dataset=False. + :param columns: Names of columns to read from the file(s). + :param validate_schema: Check that individual file schemas are all the + same / compatible. Schemas within a folder prefix should all be the + same. Disable if you have schemas that are different and want to + disable this check. + :param last_modified_begin: Filter the s3 files by the Last modified + date of the object. The filter is applied only after list all s3 + files. + :param last_modified_end: Filter the s3 files by the Last modified date + of the object. The filter is applied only after list all s3 files. + :param days: Number of days to filter. + :type path: Union[str, List[str]] + :type partition_filter: Callable[[Dict[str, str]], bool], optional + :type columns: List[str], optional + :type validate_schema: bool, optional + :type last_modified_begin: datetime, optional + :type last_modified_end: datetime, optional + :type days: integer, optional + """ + if days: + last_modified_begin = datetime.now(tz=UTC) - timedelta(days=days) + + df = wr.s3.read_parquet( + path=path, + path_suffix="parquet", + ignore_empty=True, + validate_schema=validate_schema, + use_threads=True, + dataset=True, + columns=columns, + partition_filter=partition_filter, + last_modified_begin=last_modified_begin, + last_modified_end=last_modified_end, + chunked=1 + ) + + for itm in df: + try: + # Specify the condition or remove it: + if pd.api.types.is_string_dtype(itm["result_rate_unit"]): + print(pa.Schema.from_pandas(itm)) + pa.parquet.write_metadata( + pa.Schema.from_pandas(itm), + f"{C.PATH_TO_SCHEMAS}_tmp_schema" + ) + print(itm) + break + except KeyError: + pass + + @staticmethod + def _create_dataframe_from_parquet( + path, + partition_filter=None, + columns=None, + validate_schema=False, + last_modified_begin=None, + last_modified_end=None, + days=None, + schema=None ) -> pd.DataFrame: """Read parquet stored in S3 compatible storage and returns Pandas Dataframe. @@ -150,6 +257,7 @@ class Data: :param last_modified_end: Filter the s3 files by the Last modified date of the object. The filter is applied only after list all s3 files. :param days: Number of days to filter. + :param schema: Path to schema to use when reading data from the parquet. :type path: Union[str, List[str]] :type partition_filter: Callable[[Dict[str, str]], bool], optional :type columns: List[str], optional @@ -157,6 +265,7 @@ class Data: :type last_modified_begin: datetime, optional :type last_modified_end: datetime, optional :type days: integer, optional + :type schema: string :returns: Pandas DataFrame or None if DataFrame cannot be fetched. :rtype: DataFrame """ @@ -169,31 +278,38 @@ class Data: path=path, path_suffix="parquet", ignore_empty=True, + schema=schema, validate_schema=validate_schema, use_threads=True, dataset=True, columns=columns, partition_filter=partition_filter, last_modified_begin=last_modified_begin, - last_modified_end=last_modified_end + last_modified_end=last_modified_end, + dtype_backend="pyarrow" ) + df.info(verbose=True, memory_usage="deep") logging.debug( f"\nCreation of dataframe {path} took: {time() - start}\n" ) + except (ArrowInvalid, ArrowNotImplementedError) as err: + logging.error(f"Reading of data from parquets FAILED.\n{repr(err)}") except NoFilesFound as err: logging.error( + f"Reading of data from parquets FAILED.\n" f"No parquets found in specified time period.\n" f"Nr of days: {days}\n" f"last_modified_begin: {last_modified_begin}\n" - f"{err}" + f"{repr(err)}" ) except EmptyDataFrame as err: logging.error( + f"Reading of data from parquets FAILED.\n" f"No data in parquets in specified time period.\n" f"Nr of days: {days}\n" f"last_modified_begin: {last_modified_begin}\n" - f"{err}" + f"{repr(err)}" ) return df @@ -209,15 +325,31 @@ class Data: :rtype: dict(str: pandas.DataFrame) """ - lst_trending = list() - lst_iterative = list() - lst_coverage = list() + data_lists = { + "statistics": list(), + "trending": list(), + "iterative": list(), + "coverage": list() + } + logging.info("\n\nReading data:\n" + "-" * 13 + "\n") for data_set in self._data_spec: logging.info( - f"Reading data for {data_set['data_type']} " - f"{data_set['partition_name']} {data_set.get('release', '')}" + f"\n\nReading data for {data_set['data_type']} " + f"{data_set['partition_name']} {data_set.get('release', '')}\n" ) + schema_file = data_set.get("schema", None) + if schema_file: + try: + schema = pa.parquet.read_schema( + f"{C.PATH_TO_SCHEMAS}{schema_file}" + ) + except FileNotFoundError as err: + logging.error(repr(err)) + logging.error("Proceeding without schema.") + schema = None + else: + schema = None partition_filter = lambda part: True \ if part[data_set["partition"]] == data_set["partition_name"] \ else False @@ -229,51 +361,37 @@ class Data: path=data_set["path"], partition_filter=partition_filter, columns=data_set.get("columns", None), - days=time_period + days=time_period, + schema=schema ) - - if data_set["data_type"] == "statistics": - self._data["statistics"] = data - elif data_set["data_type"] == "trending": - lst_trending.append(data) - elif data_set["data_type"] == "iterative": - data["release"] = data_set["release"] - data["release"] = data["release"].astype("category") - lst_iterative.append(data) - elif data_set["data_type"] == "coverage": + if data_set["data_type"] in ("iterative", "coverage"): data["release"] = data_set["release"] data["release"] = data["release"].astype("category") - lst_coverage.append(data) - else: - raise NotImplementedError( - f"The data type {data_set['data_type']} is not implemented." - ) - self._data["iterative"] = pd.concat( - lst_iterative, - ignore_index=True, - copy=False - ) - self._data["trending"] = pd.concat( - lst_trending, - ignore_index=True, - copy=False - ) - self._data["coverage"] = pd.concat( - lst_coverage, - ignore_index=True, - copy=False - ) + data_lists[data_set["data_type"]].append(data) + logging.info( + "\n\nData post-processing, validation and summary:\n" + + "-" * 45 + "\n" + ) for key in self._data.keys(): - logging.info( - f"\nData frame {key}:" - f"\n{self._data[key].memory_usage(deep=True)}\n" - ) + logging.info(f"\n\nDataframe {key}:\n") + self._data[key] = pd.concat( + data_lists[key], + ignore_index=True, + copy=False + ) self._data[key].info(verbose=True, memory_usage="deep") + err_msg = self._validate_columns(key) + if err_msg: + self._data[key] = pd.DataFrame() + logging.error( + f"Data validation FAILED.\n" + f"{err_msg}\n" + "Generated dataframe replaced by an empty dataframe." + ) - mem_alloc = \ - resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / 1000 - logging.info(f"Memory allocation: {mem_alloc:.0f}MB") + mem_alloc = resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / 1000 + logging.info(f"\n\nMemory allocation: {mem_alloc:.0f}MB\n") return self._data |