diff options
Diffstat (limited to 'csit.infra.dash/app/cdash/news/tables.py')
-rw-r--r-- | csit.infra.dash/app/cdash/news/tables.py | 176 |
1 files changed, 176 insertions, 0 deletions
diff --git a/csit.infra.dash/app/cdash/news/tables.py b/csit.infra.dash/app/cdash/news/tables.py new file mode 100644 index 0000000000..7c0cc66eda --- /dev/null +++ b/csit.infra.dash/app/cdash/news/tables.py @@ -0,0 +1,176 @@ +# Copyright (c) 2022 Cisco and/or its affiliates. +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at: +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +"""The tables with news. +""" + +import pandas as pd +import dash_bootstrap_components as dbc + +from datetime import datetime, timedelta + + +def _table_info(job_data: pd.DataFrame) -> dbc.Table: + """Generates table with info about the job. + + :param job_data: Dataframe with information about the job. + :type job_data: pandas.DataFrame + :returns: Table with job info. + :rtype: dbc.Table + """ + return dbc.Table.from_dataframe( + pd.DataFrame.from_dict( + { + "Job": job_data["job"], + "Last Build": job_data["build"], + "Date": job_data["start"], + "DUT": job_data["dut_type"], + "DUT Version": job_data["dut_version"], + "Hosts": ", ".join(job_data["hosts"].to_list()[0]) + } + ), + bordered=True, + striped=True, + hover=True, + size="sm", + color="info" + ) + + +def _table_failed(job_data: pd.DataFrame, failed: list) -> dbc.Table: + """Generates table with failed tests from the last run of the job. + + :param job_data: Dataframe with information about the job. + :param failed: List of failed tests. + :type job_data: pandas.DataFrame + :type failed: list + :returns: Table with fialed tests. + :rtype: dbc.Table + """ + return dbc.Table.from_dataframe( + pd.DataFrame.from_dict( + { + ( + f"Last Failed Tests on " + f"{job_data['start'].values[0]} ({len(failed)})" + ): failed + } + ), + bordered=True, + striped=True, + hover=True, + size="sm", + color="danger" + ) + + +def _table_gressions(itms: dict, color: str) -> dbc.Table: + """Generates table with regressions. + + :param itms: Dictionary with items (regressions or progressions) and their + last occurence. + :param color: Color of the table. + :type regressions: dict + :type color: str + :returns: The table with regressions. + :rtype: dbc.Table + """ + return dbc.Table.from_dataframe( + pd.DataFrame.from_dict(itms), + bordered=True, + striped=True, + hover=True, + size="sm", + color=color + ) + + +def table_news(data: pd.DataFrame, job: str, period: int) -> list: + """Generates the tables with news: + 1. Falied tests from the last run + 2. Regressions and progressions calculated from the last C.NEWS_TIME_PERIOD + days. + + :param data: Trending data with calculated annomalies to be displayed in the + tables. + :param job: The job name. + :param period: The time period (nr of days from now) taken into account. + :type data: pandas.DataFrame + :type job: str + :type period: int + :returns: List of tables. + :rtype: list + """ + + last_day = datetime.utcnow() - timedelta(days=period) + r_list = list() + job_data = data.loc[(data["job"] == job)] + r_list.append(_table_info(job_data)) + + failed = job_data["failed"].to_list()[0] + if failed: + r_list.append(_table_failed(job_data, failed)) + + title = f"Regressions in the last {period} days" + regressions = {title: list(), "Last Regression": list()} + for itm in job_data["regressions"].to_list()[0]: + if itm[1] < last_day: + break + regressions[title].append(itm[0]) + regressions["Last Regression"].append( + itm[1].strftime('%Y-%m-%d %H:%M')) + if regressions["Last Regression"]: + r_list.append(_table_gressions(regressions, "warning")) + + title = f"Progressions in the last {period} days" + progressions = {title: list(), "Last Progression": list()} + for itm in job_data["progressions"].to_list()[0]: + if itm[1] < last_day: + break + progressions[title].append(itm[0]) + progressions["Last Progression"].append( + itm[1].strftime('%Y-%m-%d %H:%M')) + if progressions["Last Progression"]: + r_list.append(_table_gressions(progressions, "success")) + + return r_list + + +def table_summary(data: pd.DataFrame, jobs: list, period: int) -> list: + """Generates summary (failed tests, regressions and progressions) from the + last week. + + :param data: Trending data with calculated annomalies to be displayed in the + tables. + :param jobs: List of jobs. + :params period: The time period for the summary table. + :type data: pandas.DataFrame + :type job: str + :type period: int + :returns: List of tables. + :rtype: list + """ + + return [ + dbc.Accordion( + children=[ + dbc.AccordionItem( + title=job, + children=table_news(data, job, period) + ) for job in jobs + ], + class_name="gy-2 p-0", + start_collapsed=True, + always_open=True + ) + ] |