diff options
Diffstat (limited to 'csit.infra.dash/app/cdash/report/graphs.py')
-rw-r--r-- | csit.infra.dash/app/cdash/report/graphs.py | 40 |
1 files changed, 29 insertions, 11 deletions
diff --git a/csit.infra.dash/app/cdash/report/graphs.py b/csit.infra.dash/app/cdash/report/graphs.py index 6b7fd12850..d1cd1427a1 100644 --- a/csit.infra.dash/app/cdash/report/graphs.py +++ b/csit.infra.dash/app/cdash/report/graphs.py @@ -14,6 +14,7 @@ """Implementation of graphs for iterative data. """ + import plotly.graph_objects as go import pandas as pd @@ -129,17 +130,28 @@ def graph_iterative(data: pd.DataFrame, sel:dict, layout: dict, nr_of_samples = len(y_data) + customdata = list() + metadata = { + "csit release": itm["rls"], + "dut": itm["dut"], + "dut version": itm["dutver"], + "infra": itm["phy"], + "test": ( + f"{itm['area']}-{itm['framesize']}-{itm['core']}-" + f"{itm['test']}-{itm['testtype']}" + ) + } + if itm["testtype"] == "mrr": - c_data = [ - ( - f"{itm_data['job'].to_list()[0]}/", - f"{itm_data['build'].to_list()[0]}" - ), - ] * nr_of_samples + metadata["csit-ref"] = ( + f"{itm_data['job'].to_list()[0]}/", + f"{itm_data['build'].to_list()[0]}" + ) + customdata = [{"metadata": metadata}, ] * nr_of_samples else: - c_data = list() for _, row in itm_data.iterrows(): - c_data.append(f"{row['job']}/{row['build']}") + metadata["csit-ref"] = f"{row['job']}/{row['build']}" + customdata.append({"metadata": deepcopy(metadata)}) tput_kwargs = dict( y=y_data, name=( @@ -152,7 +164,7 @@ def graph_iterative(data: pd.DataFrame, sel:dict, layout: dict, boxpoints="all", jitter=0.3, marker=dict(color=get_color(idx)), - customdata=c_data + customdata=customdata ) tput_traces.append(go.Box(**tput_kwargs)) show_tput = True @@ -160,9 +172,15 @@ def graph_iterative(data: pd.DataFrame, sel:dict, layout: dict, if ttype == "pdr": customdata = list() for _, row in itm_data.iterrows(): - customdata.append( - get_hdrh_latencies(row, f"{row['job']}/{row['build']}") + hdrh = get_hdrh_latencies( + row, + f"{metadata['infra']}-{metadata['test']}" ) + metadata["csit-ref"] = f"{row['job']}/{row['build']}" + customdata.append({ + "metadata": deepcopy(metadata), + "hdrh": hdrh + }) y_lat_row = itm_data[C.VALUE_ITER["latency"]].to_list() y_lat = [(y / norm_factor) for y in y_lat_row] |