aboutsummaryrefslogtreecommitdiffstats
path: root/csit.infra.dash/app/cdash/utils/utils.py
diff options
context:
space:
mode:
Diffstat (limited to 'csit.infra.dash/app/cdash/utils/utils.py')
-rw-r--r--csit.infra.dash/app/cdash/utils/utils.py54
1 files changed, 1 insertions, 53 deletions
diff --git a/csit.infra.dash/app/cdash/utils/utils.py b/csit.infra.dash/app/cdash/utils/utils.py
index d9347b1c13..29bee3d039 100644
--- a/csit.infra.dash/app/cdash/utils/utils.py
+++ b/csit.infra.dash/app/cdash/utils/utils.py
@@ -11,7 +11,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
-"""Function used by Dash applications.
+"""Functions used by Dash applications.
"""
import pandas as pd
@@ -22,65 +22,13 @@ import hdrh.histogram
import hdrh.codec
from math import sqrt
-from numpy import isnan
from dash import dcc
from datetime import datetime
-from ..jumpavg import classify
from ..utils.constants import Constants as C
from ..utils.url_processing import url_encode
-def classify_anomalies(data):
- """Process the data and return anomalies and trending values.
-
- Gather data into groups with average as trend value.
- Decorate values within groups to be normal,
- the first value of changed average as a regression, or a progression.
-
- :param data: Full data set with unavailable samples replaced by nan.
- :type data: OrderedDict
- :returns: Classification and trend values
- :rtype: 3-tuple, list of strings, list of floats and list of floats
- """
- # NaN means something went wrong.
- # Use 0.0 to cause that being reported as a severe regression.
- bare_data = [0.0 if isnan(sample) else sample for sample in data.values()]
- # TODO: Make BitCountingGroupList a subclass of list again?
- group_list = classify(bare_data).group_list
- group_list.reverse() # Just to use .pop() for FIFO.
- classification = list()
- avgs = list()
- stdevs = list()
- active_group = None
- values_left = 0
- avg = 0.0
- stdv = 0.0
- for sample in data.values():
- if isnan(sample):
- classification.append("outlier")
- avgs.append(sample)
- stdevs.append(sample)
- continue
- if values_left < 1 or active_group is None:
- values_left = 0
- while values_left < 1: # Ignore empty groups (should not happen).
- active_group = group_list.pop()
- values_left = len(active_group.run_list)
- avg = active_group.stats.avg
- stdv = active_group.stats.stdev
- classification.append(active_group.comment)
- avgs.append(avg)
- stdevs.append(stdv)
- values_left -= 1
- continue
- classification.append("normal")
- avgs.append(avg)
- stdevs.append(stdv)
- values_left -= 1
- return classification, avgs, stdevs
-
-
def get_color(idx: int) -> str:
"""Returns a color from the list defined in Constants.PLOT_COLORS defined by
its index.