diff options
Diffstat (limited to 'csit.infra.dash/app/pal/trending/graphs.py')
-rw-r--r-- | csit.infra.dash/app/pal/trending/graphs.py | 408 |
1 files changed, 408 insertions, 0 deletions
diff --git a/csit.infra.dash/app/pal/trending/graphs.py b/csit.infra.dash/app/pal/trending/graphs.py new file mode 100644 index 0000000000..1eff4aa889 --- /dev/null +++ b/csit.infra.dash/app/pal/trending/graphs.py @@ -0,0 +1,408 @@ +# Copyright (c) 2022 Cisco and/or its affiliates. +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at: +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +""" +""" + +import plotly.graph_objects as go +import pandas as pd + +import hdrh.histogram +import hdrh.codec + +from datetime import datetime + +from ..utils.constants import Constants as C +from ..utils.utils import classify_anomalies, get_color + + +def _get_hdrh_latencies(row: pd.Series, name: str) -> dict: + """Get the HDRH latencies from the test data. + + :param row: A row fron the data frame with test data. + :param name: The test name to be displayed as the graph title. + :type row: pandas.Series + :type name: str + :returns: Dictionary with HDRH latencies. + :rtype: dict + """ + + latencies = {"name": name} + for key in C.LAT_HDRH: + try: + latencies[key] = row[key] + except KeyError: + return None + + return latencies + + +def select_trending_data(data: pd.DataFrame, itm:dict) -> pd.DataFrame: + """Select the data for graphs from the provided data frame. + + :param data: Data frame with data for graphs. + :param itm: Item (in this case job name) which data will be selected from + the input data frame. + :type data: pandas.DataFrame + :type itm: str + :returns: A data frame with selected data. + :rtype: pandas.DataFrame + """ + + phy = itm["phy"].split("-") + if len(phy) == 4: + topo, arch, nic, drv = phy + if drv == "dpdk": + drv = "" + else: + drv += "-" + drv = drv.replace("_", "-") + else: + return None + + core = str() if itm["dut"] == "trex" else f"{itm['core']}" + ttype = "ndrpdr" if itm["testtype"] in ("ndr", "pdr") else itm["testtype"] + dut_v100 = "none" if itm["dut"] == "trex" else itm["dut"] + dut_v101 = itm["dut"] + + df = data.loc[( + ( + ( + (data["version"] == "1.0.0") & + (data["dut_type"].str.lower() == dut_v100) + ) | + ( + (data["version"] == "1.0.1") & + (data["dut_type"].str.lower() == dut_v101) + ) + ) & + (data["test_type"] == ttype) & + (data["passed"] == True) + )] + df = df[df.job.str.endswith(f"{topo}-{arch}")] + df = df[df.test_id.str.contains( + f"^.*[.|-]{nic}.*{itm['framesize']}-{core}-{drv}{itm['test']}-{ttype}$", + regex=True + )].sort_values(by="start_time", ignore_index=True) + + return df + + +def _generate_trending_traces(ttype: str, name: str, df: pd.DataFrame, + color: str, norm_factor: float) -> list: + """Generate the trending traces for the trending graph. + + :param ttype: Test type (MRR, NDR, PDR). + :param name: The test name to be displayed as the graph title. + :param df: Data frame with test data. + :param color: The color of the trace (samples and trend line). + :param norm_factor: The factor used for normalization of the results to CPU + frequency set to Constants.NORM_FREQUENCY. + :type ttype: str + :type name: str + :type df: pandas.DataFrame + :type color: str + :type norm_factor: float + :returns: Traces (samples, trending line, anomalies) + :rtype: list + """ + + df = df.dropna(subset=[C.VALUE[ttype], ]) + if df.empty: + return list() + if df.empty: + return list() + + x_axis = df["start_time"].tolist() + if ttype == "pdr-lat": + y_data = [(itm / norm_factor) for itm in df[C.VALUE[ttype]].tolist()] + else: + y_data = [(itm * norm_factor) for itm in df[C.VALUE[ttype]].tolist()] + + anomalies, trend_avg, trend_stdev = classify_anomalies( + {k: v for k, v in zip(x_axis, y_data)} + ) + + hover = list() + customdata = list() + for idx, (_, row) in enumerate(df.iterrows()): + d_type = "trex" if row["dut_type"] == "none" else row["dut_type"] + hover_itm = ( + f"date: {row['start_time'].strftime('%Y-%m-%d %H:%M:%S')}<br>" + f"<prop> [{row[C.UNIT[ttype]]}]: {y_data[idx]:,.0f}<br>" + f"<stdev>" + f"{d_type}-ref: {row['dut_version']}<br>" + f"csit-ref: {row['job']}/{row['build']}<br>" + f"hosts: {', '.join(row['hosts'])}" + ) + if ttype == "mrr": + stdev = ( + f"stdev [{row['result_receive_rate_rate_unit']}]: " + f"{row['result_receive_rate_rate_stdev']:,.0f}<br>" + ) + else: + stdev = "" + hover_itm = hover_itm.replace( + "<prop>", "latency" if ttype == "pdr-lat" else "average" + ).replace("<stdev>", stdev) + hover.append(hover_itm) + if ttype == "pdr-lat": + customdata.append(_get_hdrh_latencies(row, name)) + + hover_trend = list() + for avg, stdev, (_, row) in zip(trend_avg, trend_stdev, df.iterrows()): + d_type = "trex" if row["dut_type"] == "none" else row["dut_type"] + hover_itm = ( + f"date: {row['start_time'].strftime('%Y-%m-%d %H:%M:%S')}<br>" + f"trend [pps]: {avg:,.0f}<br>" + f"stdev [pps]: {stdev:,.0f}<br>" + f"{d_type}-ref: {row['dut_version']}<br>" + f"csit-ref: {row['job']}/{row['build']}<br>" + f"hosts: {', '.join(row['hosts'])}" + ) + if ttype == "pdr-lat": + hover_itm = hover_itm.replace("[pps]", "[us]") + hover_trend.append(hover_itm) + + traces = [ + go.Scatter( # Samples + x=x_axis, + y=y_data, + name=name, + mode="markers", + marker={ + "size": 5, + "color": color, + "symbol": "circle", + }, + text=hover, + hoverinfo="text+name", + showlegend=True, + legendgroup=name, + customdata=customdata + ), + go.Scatter( # Trend line + x=x_axis, + y=trend_avg, + name=name, + mode="lines", + line={ + "shape": "linear", + "width": 1, + "color": color, + }, + text=hover_trend, + hoverinfo="text+name", + showlegend=False, + legendgroup=name, + ) + ] + + if anomalies: + anomaly_x = list() + anomaly_y = list() + anomaly_color = list() + hover = list() + for idx, anomaly in enumerate(anomalies): + if anomaly in ("regression", "progression"): + anomaly_x.append(x_axis[idx]) + anomaly_y.append(trend_avg[idx]) + anomaly_color.append(C.ANOMALY_COLOR[anomaly]) + hover_itm = ( + f"date: {x_axis[idx].strftime('%Y-%m-%d %H:%M:%S')}<br>" + f"trend [pps]: {trend_avg[idx]:,.0f}<br>" + f"classification: {anomaly}" + ) + if ttype == "pdr-lat": + hover_itm = hover_itm.replace("[pps]", "[us]") + hover.append(hover_itm) + anomaly_color.extend([0.0, 0.5, 1.0]) + traces.append( + go.Scatter( + x=anomaly_x, + y=anomaly_y, + mode="markers", + text=hover, + hoverinfo="text+name", + showlegend=False, + legendgroup=name, + name=name, + marker={ + "size": 15, + "symbol": "circle-open", + "color": anomaly_color, + "colorscale": C.COLORSCALE_LAT \ + if ttype == "pdr-lat" else C.COLORSCALE_TPUT, + "showscale": True, + "line": { + "width": 2 + }, + "colorbar": { + "y": 0.5, + "len": 0.8, + "title": "Circles Marking Data Classification", + "titleside": "right", + "tickmode": "array", + "tickvals": [0.167, 0.500, 0.833], + "ticktext": C.TICK_TEXT_LAT \ + if ttype == "pdr-lat" else C.TICK_TEXT_TPUT, + "ticks": "", + "ticklen": 0, + "tickangle": -90, + "thickness": 10 + } + } + ) + ) + + return traces + + +def graph_trending(data: pd.DataFrame, sel:dict, layout: dict, + normalize: bool) -> tuple: + """Generate the trending graph(s) - MRR, NDR, PDR and for PDR also Latences + (result_latency_forward_pdr_50_avg). + + :param data: Data frame with test results. + :param sel: Selected tests. + :param layout: Layout of plot.ly graph. + :param normalize: If True, the data is normalized to CPU frquency + Constants.NORM_FREQUENCY. + :type data: pandas.DataFrame + :type sel: dict + :type layout: dict + :type normalize: bool + :returns: Trending graph(s) + :rtype: tuple(plotly.graph_objects.Figure, plotly.graph_objects.Figure) + """ + + if not sel: + return None, None + + fig_tput = None + fig_lat = None + for idx, itm in enumerate(sel): + + df = select_trending_data(data, itm) + if df is None or df.empty: + continue + + name = "-".join((itm["dut"], itm["phy"], itm["framesize"], itm["core"], + itm["test"], itm["testtype"], )) + if normalize: + phy = itm["phy"].split("-") + topo_arch = f"{phy[0]}-{phy[1]}" if len(phy) == 4 else str() + norm_factor = (C.NORM_FREQUENCY / C.FREQUENCY[topo_arch]) \ + if topo_arch else 1.0 + else: + norm_factor = 1.0 + traces = _generate_trending_traces( + itm["testtype"], name, df, get_color(idx), norm_factor + ) + if traces: + if not fig_tput: + fig_tput = go.Figure() + fig_tput.add_traces(traces) + + if itm["testtype"] == "pdr": + traces = _generate_trending_traces( + "pdr-lat", name, df, get_color(idx), norm_factor + ) + if traces: + if not fig_lat: + fig_lat = go.Figure() + fig_lat.add_traces(traces) + + if fig_tput: + fig_tput.update_layout(layout.get("plot-trending-tput", dict())) + if fig_lat: + fig_lat.update_layout(layout.get("plot-trending-lat", dict())) + + return fig_tput, fig_lat + + +def graph_hdrh_latency(data: dict, layout: dict) -> go.Figure: + """Generate HDR Latency histogram graphs. + + :param data: HDRH data. + :param layout: Layout of plot.ly graph. + :type data: dict + :type layout: dict + :returns: HDR latency Histogram. + :rtype: plotly.graph_objects.Figure + """ + + fig = None + + traces = list() + for idx, (lat_name, lat_hdrh) in enumerate(data.items()): + try: + decoded = hdrh.histogram.HdrHistogram.decode(lat_hdrh) + except (hdrh.codec.HdrLengthException, TypeError) as err: + continue + previous_x = 0.0 + prev_perc = 0.0 + xaxis = list() + yaxis = list() + hovertext = list() + for item in decoded.get_recorded_iterator(): + # The real value is "percentile". + # For 100%, we cut that down to "x_perc" to avoid + # infinity. + percentile = item.percentile_level_iterated_to + x_perc = min(percentile, C.PERCENTILE_MAX) + xaxis.append(previous_x) + yaxis.append(item.value_iterated_to) + hovertext.append( + f"<b>{C.GRAPH_LAT_HDRH_DESC[lat_name]}</b><br>" + f"Direction: {('W-E', 'E-W')[idx % 2]}<br>" + f"Percentile: {prev_perc:.5f}-{percentile:.5f}%<br>" + f"Latency: {item.value_iterated_to}uSec" + ) + next_x = 100.0 / (100.0 - x_perc) + xaxis.append(next_x) + yaxis.append(item.value_iterated_to) + hovertext.append( + f"<b>{C.GRAPH_LAT_HDRH_DESC[lat_name]}</b><br>" + f"Direction: {('W-E', 'E-W')[idx % 2]}<br>" + f"Percentile: {prev_perc:.5f}-{percentile:.5f}%<br>" + f"Latency: {item.value_iterated_to}uSec" + ) + previous_x = next_x + prev_perc = percentile + + traces.append( + go.Scatter( + x=xaxis, + y=yaxis, + name=C.GRAPH_LAT_HDRH_DESC[lat_name], + mode="lines", + legendgroup=C.GRAPH_LAT_HDRH_DESC[lat_name], + showlegend=bool(idx % 2), + line=dict( + color=get_color(int(idx/2)), + dash="solid", + width=1 if idx % 2 else 2 + ), + hovertext=hovertext, + hoverinfo="text" + ) + ) + if traces: + fig = go.Figure() + fig.add_traces(traces) + layout_hdrh = layout.get("plot-hdrh-latency", None) + if lat_hdrh: + fig.update_layout(layout_hdrh) + + return fig |