diff options
Diffstat (limited to 'csit.infra.dash/app/pal/utils/utils.py')
-rw-r--r-- | csit.infra.dash/app/pal/utils/utils.py | 344 |
1 files changed, 344 insertions, 0 deletions
diff --git a/csit.infra.dash/app/pal/utils/utils.py b/csit.infra.dash/app/pal/utils/utils.py new file mode 100644 index 0000000000..9e4eeeb892 --- /dev/null +++ b/csit.infra.dash/app/pal/utils/utils.py @@ -0,0 +1,344 @@ +# Copyright (c) 2022 Cisco and/or its affiliates. +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at: +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +"""Function used by Dash applications. +""" + +import pandas as pd +import dash_bootstrap_components as dbc + +from numpy import isnan +from dash import dcc +from datetime import datetime + +from ..jumpavg import classify +from ..utils.constants import Constants as C +from ..utils.url_processing import url_encode + + +def classify_anomalies(data): + """Process the data and return anomalies and trending values. + + Gather data into groups with average as trend value. + Decorate values within groups to be normal, + the first value of changed average as a regression, or a progression. + + :param data: Full data set with unavailable samples replaced by nan. + :type data: OrderedDict + :returns: Classification and trend values + :rtype: 3-tuple, list of strings, list of floats and list of floats + """ + # NaN means something went wrong. + # Use 0.0 to cause that being reported as a severe regression. + bare_data = [0.0 if isnan(sample) else sample for sample in data.values()] + # TODO: Make BitCountingGroupList a subclass of list again? + group_list = classify(bare_data).group_list + group_list.reverse() # Just to use .pop() for FIFO. + classification = list() + avgs = list() + stdevs = list() + active_group = None + values_left = 0 + avg = 0.0 + stdv = 0.0 + for sample in data.values(): + if isnan(sample): + classification.append("outlier") + avgs.append(sample) + stdevs.append(sample) + continue + if values_left < 1 or active_group is None: + values_left = 0 + while values_left < 1: # Ignore empty groups (should not happen). + active_group = group_list.pop() + values_left = len(active_group.run_list) + avg = active_group.stats.avg + stdv = active_group.stats.stdev + classification.append(active_group.comment) + avgs.append(avg) + stdevs.append(stdv) + values_left -= 1 + continue + classification.append("normal") + avgs.append(avg) + stdevs.append(stdv) + values_left -= 1 + return classification, avgs, stdevs + + +def get_color(idx: int) -> str: + """Returns a color from the list defined in Constants.PLOT_COLORS defined by + its index. + + :param idx: Index of the color. + :type idx: int + :returns: Color defined by hex code. + :trype: str + """ + return C.PLOT_COLORS[idx % len(C.PLOT_COLORS)] + + +def show_tooltip(tooltips:dict, id: str, title: str, + clipboard_id: str=None) -> list: + """Generate list of elements to display a text (e.g. a title) with a + tooltip and optionaly with Copy&Paste icon and the clipboard + functionality enabled. + + :param tooltips: Dictionary with tooltips. + :param id: Tooltip ID. + :param title: A text for which the tooltip will be displayed. + :param clipboard_id: If defined, a Copy&Paste icon is displayed and the + clipboard functionality is enabled. + :type tooltips: dict + :type id: str + :type title: str + :type clipboard_id: str + :returns: List of elements to display a text with a tooltip and + optionaly with Copy&Paste icon. + :rtype: list + """ + + return [ + dcc.Clipboard(target_id=clipboard_id, title="Copy URL") \ + if clipboard_id else str(), + f"{title} ", + dbc.Badge( + id=id, + children="?", + pill=True, + color="white", + text_color="info", + class_name="border ms-1", + ), + dbc.Tooltip( + children=tooltips.get(id, str()), + target=id, + placement="auto" + ) + ] + + +def label(key: str) -> str: + """Returns a label for input elements (dropdowns, ...). + + If the label is not defined, the function returns the provided key. + + :param key: The key to the label defined in Constants.LABELS. + :type key: str + :returns: Label. + :rtype: str + """ + return C.LABELS.get(key, key) + + +def sync_checklists(options: list, sel: list, all: list, id: str) -> tuple: + """Synchronize a checklist with defined "options" with its "All" checklist. + + :param options: List of options for the cheklist. + :param sel: List of selected options. + :param all: List of selected option from "All" checklist. + :param id: ID of a checklist to be used for synchronization. + :returns: Tuple of lists with otions for both checklists. + :rtype: tuple of lists + """ + opts = {v["value"] for v in options} + if id =="all": + sel = list(opts) if all else list() + else: + all = ["all", ] if set(sel) == opts else list() + return sel, all + + +def list_tests(selection: dict) -> list: + """Transform list of tests to a list of dictionaries usable by checkboxes. + + :param selection: List of tests to be displayed in "Selected tests" window. + :type selection: list + :returns: List of dictionaries with "label", "value" pairs for a checkbox. + :rtype: list + """ + if selection: + return [{"label": v["id"], "value": v["id"]} for v in selection] + else: + return list() + + +def get_date(s_date: str) -> datetime: + """Transform string reprezentation of date to datetime.datetime data type. + + :param s_date: String reprezentation of date. + :type s_date: str + :returns: Date as datetime.datetime. + :rtype: datetime.datetime + """ + return datetime(int(s_date[0:4]), int(s_date[5:7]), int(s_date[8:10])) + + +def gen_new_url(url_components: dict, params: dict) -> str: + """Generate a new URL with encoded parameters. + + :param url_components: Dictionary with URL elements. It should contain + "scheme", "netloc" and "path". + :param url_components: URL parameters to be encoded to the URL. + :type parsed_url: dict + :type params: dict + :returns Encoded URL with parameters. + :rtype: str + """ + + if url_components: + return url_encode( + { + "scheme": url_components.get("scheme", ""), + "netloc": url_components.get("netloc", ""), + "path": url_components.get("path", ""), + "params": params + } + ) + else: + return str() + + +def get_duts(df: pd.DataFrame) -> list: + """Get the list of DUTs from the pre-processed information about jobs. + + :param df: DataFrame with information about jobs. + :type df: pandas.DataFrame + :returns: Alphabeticaly sorted list of DUTs. + :rtype: list + """ + return sorted(list(df["dut"].unique())) + + +def get_ttypes(df: pd.DataFrame, dut: str) -> list: + """Get the list of test types from the pre-processed information about + jobs. + + :param df: DataFrame with information about jobs. + :param dut: The DUT for which the list of test types will be populated. + :type df: pandas.DataFrame + :type dut: str + :returns: Alphabeticaly sorted list of test types. + :rtype: list + """ + return sorted(list(df.loc[(df["dut"] == dut)]["ttype"].unique())) + + +def get_cadences(df: pd.DataFrame, dut: str, ttype: str) -> list: + """Get the list of cadences from the pre-processed information about + jobs. + + :param df: DataFrame with information about jobs. + :param dut: The DUT for which the list of cadences will be populated. + :param ttype: The test type for which the list of cadences will be + populated. + :type df: pandas.DataFrame + :type dut: str + :type ttype: str + :returns: Alphabeticaly sorted list of cadences. + :rtype: list + """ + return sorted(list(df.loc[( + (df["dut"] == dut) & + (df["ttype"] == ttype) + )]["cadence"].unique())) + + +def get_test_beds(df: pd.DataFrame, dut: str, ttype: str, cadence: str) -> list: + """Get the list of test beds from the pre-processed information about + jobs. + + :param df: DataFrame with information about jobs. + :param dut: The DUT for which the list of test beds will be populated. + :param ttype: The test type for which the list of test beds will be + populated. + :param cadence: The cadence for which the list of test beds will be + populated. + :type df: pandas.DataFrame + :type dut: str + :type ttype: str + :type cadence: str + :returns: Alphabeticaly sorted list of test beds. + :rtype: list + """ + return sorted(list(df.loc[( + (df["dut"] == dut) & + (df["ttype"] == ttype) & + (df["cadence"] == cadence) + )]["tbed"].unique())) + + +def get_job(df: pd.DataFrame, dut, ttype, cadence, testbed): + """Get the name of a job defined by dut, ttype, cadence, test bed. + Input information comes from the control panel. + + :param df: DataFrame with information about jobs. + :param dut: The DUT for which the job name will be created. + :param ttype: The test type for which the job name will be created. + :param cadence: The cadence for which the job name will be created. + :param testbed: The test bed for which the job name will be created. + :type df: pandas.DataFrame + :type dut: str + :type ttype: str + :type cadence: str + :type testbed: str + :returns: Job name. + :rtype: str + """ + return df.loc[( + (df["dut"] == dut) & + (df["ttype"] == ttype) & + (df["cadence"] == cadence) & + (df["tbed"] == testbed) + )]["job"].item() + + +def generate_options(opts: list) -> list: + """Return list of options for radio items in control panel. The items in + the list are dictionaries with keys "label" and "value". + + :params opts: List of options (str) to be used for the generated list. + :type opts: list + :returns: List of options (dict). + :rtype: list + """ + return [{"label": i, "value": i} for i in opts] + + +def set_job_params(df: pd.DataFrame, job: str) -> dict: + """Create a dictionary with all options and values for (and from) the + given job. + + :param df: DataFrame with information about jobs. + :params job: The name of job for and from which the dictionary will be + created. + :type df: pandas.DataFrame + :type job: str + :returns: Dictionary with all options and values for (and from) the + given job. + :rtype: dict + """ + + l_job = job.split("-") + return { + "job": job, + "dut": l_job[1], + "ttype": l_job[3], + "cadence": l_job[4], + "tbed": "-".join(l_job[-2:]), + "duts": generate_options(get_duts(df)), + "ttypes": generate_options(get_ttypes(df, l_job[1])), + "cadences": generate_options(get_cadences(df, l_job[1], l_job[3])), + "tbeds": generate_options( + get_test_beds(df, l_job[1], l_job[3], l_job[4])) + } |