aboutsummaryrefslogtreecommitdiffstats
path: root/csit.infra.etl/local.py
diff options
context:
space:
mode:
Diffstat (limited to 'csit.infra.etl/local.py')
-rw-r--r--csit.infra.etl/local.py176
1 files changed, 176 insertions, 0 deletions
diff --git a/csit.infra.etl/local.py b/csit.infra.etl/local.py
new file mode 100644
index 0000000000..79e18d1c64
--- /dev/null
+++ b/csit.infra.etl/local.py
@@ -0,0 +1,176 @@
+#!/usr/bin/env python3
+
+# Copyright (c) 2022 Cisco and/or its affiliates.
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at:
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+"""ETL script running on top of the localhost"""
+
+from datetime import datetime
+from json import dump, load
+from pathlib import Path
+
+from awsglue.context import GlueContext
+from pyspark.context import SparkContext
+from pyspark.sql.functions import col, lit, regexp_replace
+from pyspark.sql.types import StructType
+
+
+PATH="/app/tests"
+SUFFIX="info.json"
+IGNORE_SUFFIX=[
+ "suite.info.json",
+ "setup.info.json",
+ "teardown.info.json",
+ "suite.output.info.json",
+ "setup.output.info.json",
+ "teardown.output.info.json"
+]
+
+
+def schema_dump(schema, option):
+ """Dumps Spark DataFrame schema into JSON file.
+
+ :param schema: DataFrame schema.
+ :type schema: StructType
+ :param option: File name suffix for the DataFrame schema.
+ :type option: string
+ """
+ with open(f"trending_{option}.json", "w", encoding="UTF-8") as f_schema:
+ dump(schema.jsonValue(), f_schema, indent=4, sort_keys=True)
+
+
+def schema_load(option):
+ """Loads Spark DataFrame schema from JSON file.
+
+ :param option: File name suffix for the DataFrame schema.
+ :type option: string
+ :returns: DataFrame schema.
+ :rtype: StructType
+ """
+ with open(f"trending_{option}.json", "r", encoding="UTF-8") as f_schema:
+ return StructType.fromJson(load(f_schema))
+
+
+def schema_dump_from_json(option):
+ """Loads JSON with data and dumps Spark DataFrame schema into JSON file.
+
+ :param option: File name suffix for the JSON data.
+ :type option: string
+ """
+ schema_dump(spark \
+ .read \
+ .option("multiline", "true") \
+ .json(f"data_{option}.json") \
+ .schema, option
+ )
+
+
+def flatten_frame(nested_sdf):
+ """Unnest Spark DataFrame in case there nested structered columns.
+
+ :param nested_sdf: Spark DataFrame.
+ :type nested_sdf: DataFrame
+ :returns: Unnest DataFrame.
+ :rtype: DataFrame
+ """
+ stack = [((), nested_sdf)]
+ columns = []
+ while len(stack) > 0:
+ parents, sdf = stack.pop()
+ for column_name, column_type in sdf.dtypes:
+ if column_type[:6] == "struct":
+ projected_sdf = sdf.select(column_name + ".*")
+ stack.append((parents + (column_name,), projected_sdf))
+ else:
+ columns.append(
+ col(".".join(parents + (column_name,))) \
+ .alias("_".join(parents + (column_name,)))
+ )
+ return nested_sdf.select(columns)
+
+
+def process_json_to_dataframe(schema_name, paths):
+ """Processes JSON to Spark DataFrame.
+
+ :param schema_name: Schema name.
+ :type schema_name: string
+ :param paths: S3 paths to process.
+ :type paths: list
+ :returns: Spark DataFrame.
+ :rtype: DataFrame
+ """
+ drop_subset = [
+ "dut_type", "dut_version",
+ "passed",
+ "test_name_long", "test_name_short",
+ "test_type",
+ "version"
+ ]
+
+ # load schemas
+ schema = schema_load(schema_name)
+
+ # create empty DF out of schemas
+ sdf = spark.createDataFrame([], schema)
+
+ # filter list
+ filtered = [path for path in paths if schema_name in path]
+
+ # select
+ for path in filtered:
+ print(path)
+
+ sdf_loaded = spark \
+ .read \
+ .option("multiline", "true") \
+ .schema(schema) \
+ .json(path) \
+ .withColumn("job", lit("local")) \
+ .withColumn("build", lit("unknown"))
+ sdf = sdf.unionByName(sdf_loaded, allowMissingColumns=True)
+
+ # drop rows with all nulls and drop rows with null in critical frames
+ sdf = sdf.na.drop(how="all")
+ sdf = sdf.na.drop(how="any", thresh=None, subset=drop_subset)
+
+ # flatten frame
+ sdf = flatten_frame(sdf)
+
+ return sdf
+
+
+# create SparkContext and GlueContext
+spark_context = SparkContext.getOrCreate()
+spark_context.setLogLevel("WARN")
+glue_context = GlueContext(spark_context)
+spark = glue_context.spark_session
+
+# files of interest
+paths = []
+for file in Path(PATH).glob(f"**/*{SUFFIX}"):
+ if file.name not in IGNORE_SUFFIX:
+ paths.append(str(file))
+
+for schema_name in ["mrr", "ndrpdr", "soak"]:
+ out_sdf = process_json_to_dataframe(schema_name, paths)
+ out_sdf.show()
+ out_sdf.printSchema()
+ out_sdf \
+ .withColumn("year", lit(datetime.now().year)) \
+ .withColumn("month", lit(datetime.now().month)) \
+ .withColumn("day", lit(datetime.now().day)) \
+ .repartition(1) \
+ .write \
+ .partitionBy("test_type", "year", "month", "day") \
+ .mode("append") \
+ .parquet("local.parquet")